No products in the cart.
Purchase Best Mathematics - E-Books from : https://mathstudy.in/
and $I = \int_0^\pi {\frac{{\pi - x}}{{1 + \sin (\pi - x)}}} dx = \int_0^\pi {\frac{{\pi - x}}{{1 + \sin x}}} dx$ ………(ii) On adding Equations (i) and (ii), we get$2I = \pi \int_0^\pi {\frac{1}{{1 + \sin x}}} dx$ $ = \pi \int_0^\pi {\frac{{(1 - \sin x)dx}}{{(1 + \sin x)(1 - \sin x)}}}…
Lorem Ipsum is simply dumy text of the printing typesetting industry lorem.
© 2023 Created with Royal Elementor Addons