Edit Template

How to integrate $\int_0^1 x \log (1 + 2x)dx$ ~~~~~[NCERT Exemp. Q. 45,Page 166 ]

Let $I = \int_0^1 x \log (1 + 2x)dx$


$ = \left[ {\log (1 + 2x)\frac{{{x^2}}}{2}} \right]_0^1 - \int {\frac{1}{{1 + 2x}}} \cdot 2 \cdot \frac{{{x^2}}}{2}dx$


$ = \frac{1}{2}\left[ {{x^2}\log (1 + 2x)} \right]_0^1 - \int {\frac{{{x^2}}}{{1 + 2x}}} dx$


$ = \frac{1}{2}[\log 3 - 0] - \left[ {\int_0^1 {\left( {\frac{x}{2} - \frac{{\frac{x}{2}}}{{1 + 2x}}} \right)} dx} \right]$


$ = \frac{1}{2}\log 3 - \frac{1}{2}\int_0^1 x dx + \frac{1}{2}\int_0^1 {\frac{x}{{1 + 2x}}} dx$


$ = \frac{1}{2}[\log 3 - 0] - \left[ {\int_0^1 {\left( {\frac{x}{2} - \frac{{\frac{x}{2}}}{{1 + 2x}}} \right)} dx} \right]$


$ = \frac{1}{2}\log 3 - \frac{1}{2}\int_0^1 x dx + \frac{1}{2}\int_0^1 {\frac{x}{{1 + 2x}}} dx$


$ = \frac{1}{2}\log 3 - \frac{1}{2}\left[ {\frac{{{x^2}}}{2}} \right]_0^1 + \frac{1}{2}\int_0^1 {\frac{{\frac{1}{2}(2x + 1 - 1)}}{{(2x + 1)}}} dx$


$ = \frac{1}{2}\log 3 - \frac{1}{2}\left[ {\frac{1}{2} - 0} \right] + \frac{1}{4}\int_0^1 d x - \frac{1}{4}\int_0^1 {\frac{1}{{1 + 2x}}} dx$


$ = \frac{1}{2}\log 3 - \frac{1}{4} + \frac{1}{4}[x]_0^1 - \frac{1}{8}[\log |(1 + 2x)|]_0^1$
$ = \frac{1}{2}\log 3 - \frac{1}{4} + \frac{1}{4} - \frac{1}{8}[\log 3 - \log 1]$


$ = \frac{1}{2}\log 3 - \frac{1}{8}\log 3$


$ = \frac{3}{8}\log 3$

Purchase Best Mathematics - E-Books from : https://mathstudy.in/

Company

Our ebook website brings you the convenience of instant access to a diverse range of titles, spanning genres from fiction and non-fiction to self-help, business.

Features

Most Recent Posts

eBook App for FREE

Lorem Ipsum is simply dumy text of the printing typesetting industry lorem.

Hot

Category

Our ebook website brings you the convenience of instant access.

Help

Privacy Policy

Mailing List

© 2023 Created with Royal Elementor Addons