Click the link below to download the Differentiation Cheat Sheet for Class 12 and for JEE Students
Download the PDFDefinition of Differentiation
Differentiation is the process of finding the derivative of a function, which represents the rate of change of the function with respect to a variable. Mathematically, the derivative of a function \( f(x) \) is defined as:
\[ f'(x) = \lim\limits_{h \to 0} \frac{f(x+h) – f(x)}{h} \]
This definition expresses the instantaneous rate of change of \( f(x) \) at a given point \( x \).
Instantaneous Rate of Change
The derivative \( f'(x) \) represents the slope of the tangent line to the curve at \( x \).
Formulas and Properties of Differentiation
1. Basic Derivatives
\[ \frac{d}{dx} (c) = 0 \quad \text{(where \( c \) is a constant)} \] \[ \frac{d}{dx} (x) = 1 \] \[ \frac{d}{dx} (x^n) = n x^{n-1}, \quad n \in \mathbb{R} \] \[ \frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}} \] \[ \frac{d}{dx} \left(\frac{1}{x}\right) = -\frac{1}{x^2} \]
2. Trigonometric Derivatives
\[ \frac{d}{dx} (\sin x) = \cos x \] \[ \frac{d}{dx} (\cos x) = -\sin x \] \[ \frac{d}{dx} (\tan x) = \sec^2 x, \quad x \neq \frac{\pi}{2} + n\pi \] \[ \frac{d}{dx} (\cot x) = -\csc^2 x, \quad x \neq n\pi \]
3. Logarithmic and Exponential Derivatives
\[ \frac{d}{dx} (\ln x) = \frac{1}{x}, \quad x > 0 \] \[ \frac{d}{dx} (e^x) = e^x \] \[ \frac{d}{dx} (a^x) = a^x \ln a, \quad a > 0 \]
4. Differentiation Rules
(i) Sum and Difference Rule
\[ \frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) \]
(ii) Product Rule
\[ \frac{d}{dx} [u(x) v(x)] = u’ v + u v’ \]
(iii) Quotient Rule
\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u’ v – u v’}{v^2}, \quad v(x) \neq 0 \]
(iv) Chain Rule
If \( y = f(g(x)) \), then: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \]
Examples of Differentiation
Example 1: Derivative of a Polynomial Function
Let \( f(x) = x^2 + 3x + 5 \). Using the first principles: \[ f'(x) = \lim\limits_{h \to 0} \frac{(x+h)^2 + 3(x+h) + 5 – (x^2 + 3x + 5)}{h} \] Expanding: \[ = \lim\limits_{h \to 0} \frac{x^2 + 2xh + h^2 + 3x + 3h + 5 – x^2 – 3x – 5}{h} \] \[ = \lim\limits_{h \to 0} \frac{2xh + h^2 + 3h}{h} \] \[ = \lim\limits_{h \to 0} (2x + h + 3) \] \[ = 2x + 3 \] Thus, \[ \frac{d}{dx}(x^2 + 3x + 5) = 2x + 3 \]
Example 2: Derivative of Trigonometric Functions
Let \( f(x) = \sin x \), then using first principles: \[ f'(x) = \lim\limits_{h \to 0} \frac{\sin(x+h) – \sin x}{h} \] Using the identity \( \sin(A+B) = \sin A \cos B + \cos A \sin B \), \[ = \lim\limits_{h \to 0} \frac{\sin x \cos h + \cos x \sin h – \sin x}{h} \] \[ = \lim\limits_{h \to 0} \frac{\sin x (\cos h -1) + \cos x \sin h}{h} \] Since \( \lim\limits_{h \to 0} \frac{\sin h}{h} = 1 \) and \( \lim\limits_{h \to 0} \frac{\cos h -1}{h} = 0 \), \[ = \cos x \] Thus, \[ \frac{d}{dx}(\sin x) = \cos x \]
Applications of Differentiation
- Finding Tangents and Normals: The slope of the tangent line at \( x \) is \( f'(x) \), and the normal’s slope is \( -\frac{1}{f'(x)} \).
- Maxima and Minima: If \( f'(x) = 0 \) and \( f”(x) > 0 \), it’s a local minimum; if \( f”(x) < 0 \), it's a local maximum.
- Rate of Change: \( f'(x) \) gives the instantaneous rate of change of a quantity.
- Uncategorized