Find the principal values of the following :

1.
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

SOLUTION

Let $\sin^{-1}\left(-\frac{1}{2}\right) = x \Rightarrow \sin x = -\frac{1}{2}$ We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then, $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$, where $-\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Hence, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$

2.
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

SOLUTION

Let
$$\cos^{-1}\frac{\sqrt{3}}{2} = x \Rightarrow \frac{\sqrt{3}}{2} = \cos x$$

We know that the range of the principal value branch of \cos^{-1} is $[0, \pi]$ Then, $\cos x = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}$, where $\frac{\pi}{6} \in [0, \pi]$

Hence, the principal value of $\cos^{-1}\frac{\sqrt{3}}{2}$ is $\frac{\pi}{6}$.

3. $cosec^{-1}(2)$

SOLUTION

Let $\operatorname{cosec}^{-1}(2) = x \Rightarrow 2 = \operatorname{cosec} x$

We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ Then, $2 = \operatorname{cosec} x = \operatorname{cosec} \left(\frac{\pi}{6}\right)$, where $\frac{\pi}{6} \in \mathbb{C}$ $\begin{bmatrix} -\pi & \pi \end{bmatrix}$

$$\left\lfloor \frac{n}{2}, \frac{n}{2} \right\rfloor - \{0\}$$

Hence, the principal value of $cosec^{-1}(2)$ is $\pi/6$.

4. $\tan^{-1}(-\sqrt{3})$

Let $\tan^{-1}(-\sqrt{3}) = x \Rightarrow -\sqrt{3} = \tan x$ We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Then, $\tan x = -\sqrt{3} = \tan\left(-\frac{\pi}{3}\right)$, where $-\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Hence, the principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.

5.
$$\cos^{-1}\left(-\frac{1}{2}\right)$$

SOLUTION

Let
$$x = \cos^{-1}\left(-\frac{1}{2}\right) \Rightarrow -\frac{1}{2} = \cos x$$

We know that the range of principal value branch of $\cos^{-1} is [0, \pi]$ Then, $\left(-\frac{1}{2}\right) = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$, Where $\frac{2\pi}{3} \in [0, \pi]$ Hence, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

6. $\tan^{-1}(-1)$

Let $\tan^{-1}(-1) = x \Rightarrow -1 = \tan x$ We know that the range of principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Then, $-1 = \tan\left(-\frac{\pi}{4}\right)$ where $-\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Hence, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.

7.
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

SOLUTION

Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = x \Rightarrow \sec x = \frac{2}{\sqrt{3}}$$

We know that the range of principal value branch of sec⁻¹ is $[0, \pi] - \left\{\frac{\pi}{2}\right\}$.

Then, $\frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$, where $\frac{\pi}{6} \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ Hence, the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$

8. $\cot^{-1}(\sqrt{3})$

SOLUTION

Let $\cot^{-1}(\sqrt{3}) = x \Rightarrow \sqrt{3} = \cot x$

We know that the range of principal value of $\cot^{-1} is(0, \pi)$ Then, $\sqrt{3} = \cot\left(\frac{\pi}{6}\right)$, where $\frac{\pi}{6} \in (0, \pi)$ Hence, the principal value branch of $\cot^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.

9.
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$

SOLUTION

Let $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = x \Rightarrow -\frac{1}{\sqrt{2}} = \cos x$ We know that the range of principal value branch of $\cos^{-1}is [0, \pi]$ Then, $-\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4}$, Where $\frac{3\pi}{4} \in [0, \pi]$ Hence, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.

10
$$\csc^{-1}(-\sqrt{2})$$

10. $\csc^{-1}(-\sqrt{2})$ SOLUTION

Let $\operatorname{cosec}^{-1}(-\sqrt{2}) = x \Rightarrow -\sqrt{2} = \operatorname{cosec} x$

We know that the range of principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ Then $-\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{2}\right) = \operatorname{cosec}\left(-\frac{\pi}{2}\right)$

Then,
$$-\sqrt{2} = -\csc\left(\frac{-\pi}{4}\right) = \csc\left(-\frac{-\pi}{4}\right)$$

Where $-\frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ Hence, the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

Find the values of the following :

11.
$$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

SOLUTION

We know that the range of principal value branch of \tan^{-1} , \cos^{-1} and \sin^{-1} are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $[0, \pi]$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ respectively. Let $\tan^{-1}(1) = x \Rightarrow 1 = \tan x$ Then, $1 = \tan\left(\frac{\pi}{4}\right)$, where $\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y \Rightarrow -\frac{1}{2} = \cos y$$
 Then, $-\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\frac{2\pi}{3}$,
Where $\frac{2\pi}{3} \in [0, \pi]$ Let $\sin^{-1}\left(-\frac{1}{2}\right) = z \Rightarrow -\frac{1}{2} = \sin z$
Then, $-\frac{1}{2} = \sin\left(-\frac{\pi}{6}\right)$, where $-\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
So, $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right) = \left(\frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}\right) = \frac{3\pi}{4}$.
12. $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$

SOLUTION

We know that the range of principal value branch of \cos^{-1} and \sin^{-1} are $[0, \pi]$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ respectively.

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x \Rightarrow \frac{1}{2} = \cos x$$

Then, $\frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$, where $\frac{\pi}{3} \in [0, \pi]$
Let $\sin^{-1}\left(\frac{1}{2}\right) = y \Rightarrow \frac{1}{2} = \sin y$
Then, $\frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$, where $\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + 2 \cdot \frac{\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$.

13. If $\sin^{-1}x = y$, then

(A) $0 \le y \le \pi$ (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$ SOLUTION

(B)
$$\sin^{-1}x = y \Rightarrow x = \sin y$$
, where the range of principal value branch of $\sin^{-1} is \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Rightarrow -\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
14. $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to
(A) π

(II) $\frac{\pi}{3}$ (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

SOLUTION

(B) We know that the range of principal value branch of \tan^{-1} and \sec^{-1} are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ respectively. Let $\tan^{-1}(\sqrt{3}) = x \Rightarrow \sqrt{3} = \tan x$, then, $\sqrt{3} = \tan\left(\frac{\pi}{3}\right)$, where $\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Let $\sec^{-1}(-2) = y \Rightarrow -2 = \sec y$ Then, $-2 = -\sec\left(\frac{\pi}{3}\right) = \sec\left(\pi - \frac{\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right)$, Where $\frac{2\pi}{3} \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ $\therefore \tan^{-1}\sqrt{3} - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = \frac{\pi}{3}$.

www.mathstudy.in

Our Mathematics E-Books

- 1. J.E.E. (Join Entrance Exam)
 - ★ Chapter Tests (Full Syllabus- Fully Solved)
 - ★ Twenty Mock Tests (Full Length Fully Solved)
- 2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
- 3. C.BS.E.
 - ★ Work-Book Class XII (Fully Solved)
 - ★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
 - ★ Chapter Test Papers Class XII (Fully Solved)

★ Past Fifteen Years Topicwise Questions (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

- 4. I.C.S.E. & I.S.C.
 - ★Work-Book Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)

6. SAT - II Subject Mathematics (15 Papers - Fully Solved)