NCERT - Exercise 5.1

1. Prove that the function $f(x)=5 x-3$ is continuous at $\mathrm{x}=0$, at $x=0$ and at $x=5$.

SOLUTION

$f(x)=5 x-3$ At $x=0$: We have, $f(0)=-3$
$\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}} 5(0-h)-3$
$=-3$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{\substack{x \rightarrow 0+h \\ h \rightarrow 0}} 5(0+h)-3=-3$
$\therefore \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \therefore \mathrm{f}$ is continuous at $\mathrm{x}=0$.
At $x=-3:$ We have, $f(-3)=5(-3)-3=-18$
$\lim _{x \rightarrow-3^{-}} f(x)=\lim _{\substack{x \rightarrow 3-h \\ h \rightarrow 0}}[5(-3-h)-3]=\lim _{\substack{x \rightarrow 3-h \\ h \rightarrow 0}}[-15-5 h-3]=-18$
$\left.\lim _{x \rightarrow-3^{+}} f(x)=\lim _{\substack{x \rightarrow 3+h \\ h \rightarrow 0}}[5(-3+h)-3]=\lim _{\substack{x \rightarrow 3+h \\ h \rightarrow 0}}-15+5 h-3\right]=-18$
$\therefore \lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} f(x)=f(-3)$
$\therefore \mathrm{f}$ is continuous at $x=-3$.

At $x=5: f(5)=5(5)-3=22$
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{\substack{x \rightarrow 5-h \\ h \rightarrow 0}}[5(5-h)-3]=\lim _{\substack{x \rightarrow 5-h \\ h \rightarrow 0}} 25-5 h-3=22$
$\lim _{x \rightarrow 5^{+}} f(x)=\lim _{\substack{x \rightarrow 5+h \\ h \rightarrow 0}}[5(5+h)-3]=\lim _{\substack{x \rightarrow 5+h \\ h \rightarrow 0}} 25+5 h-3=22$
$\therefore \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5)$
$\therefore \mathrm{f}$ is continuous at $x=5$.
2. Examine the continuity of the function $\mathrm{f}(\mathrm{x}) 2 x^{2}-1$ at $x=3$.

SOLUTION

$$
\begin{aligned}
& f(x)=2 x^{2}-1 ; \text { R.H.L. } \\
& =\lim _{x \rightarrow 3^{+}} f(x)=\lim _{\substack{x \rightarrow 3+h \\
h \rightarrow 0}} 2(3+h)^{2}-1 \\
& =\lim _{\substack{x \rightarrow 3+h \\
h \rightarrow 0}} 2\left(9+6 h+h^{2}\right)-1 \\
& \left.=\lim _{\substack{x \rightarrow 3+h \\
h \rightarrow 0}} 18+12 h+2 h^{2}\right)-1=\lim _{\substack{x \rightarrow 3+h \\
h \rightarrow 0}}\left(17+12 h+2 h^{2}\right)=17 \\
& \text { L.H.L. }=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{\substack{x \rightarrow 3-h \\
h \rightarrow 0}} 2(3-h)^{2}-1 \\
& =\lim _{\substack{x \rightarrow 3-h \\
h \rightarrow 0}} 2\left(9-6 h+h^{2}\right)-1 \\
& =\lim _{\substack{x \rightarrow 3-h \\
h \rightarrow 0}}\left(18-12 h+2 h^{2}\right)-1 \\
& =\lim _{\substack{x \rightarrow 3-h \\
h \rightarrow 0}} 2 h^{2}-12 h+17=17 \\
& \therefore \text { R.H.L. }=\text { L.H.L. }
\end{aligned}
$$

Also, $f(3)=2(3)^{2}-1=17 \therefore \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} f(x)=f(3)$
Hence, the given function $f(x)=2 x^{2}-1$ is continuous at $\mathrm{x}=3$.
3. Examine the following functions for continuity :
(a) $f(x)=x-5$
(b) $f(x)=\frac{1}{x-5}, x \neq 5$
(c) $f(x)=\frac{x^{2}-25}{x+5}, x \neq-5$
(d) $f(x)=|x-5|$

SOLUTION

(a) $f(x)=x-5$

Let a be a real number, then
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}}(a+h)-5=a-5$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}(a-h)-5=a-5$
Also, $f(a)=a-5 \therefore \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)$
Hence, the given function $f(x)=(x-5)$ is continuous.

SOLUTION

(b) $f(x)=\frac{1}{x-5}$ Let a be a real number, then
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \frac{1}{a+h-5}=\frac{1}{a-5}$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \frac{1}{a-h-5}=\frac{1}{a-5}$
Also, $f(a)=\frac{1}{a-5} \therefore \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)$
Hence, the given function $f(x)=\frac{1}{x-5}$ is continuous at all point except at $x=5$.

SOLUTION

(c) $f(x)=\frac{x^{2}-25}{x+5}=\frac{(x+5)(x-5)}{(x+5)}=x-5$ Let 'a' be a real number, then
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}}(a+h)-5=a-5$
and $\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}(a-h)-5=a-5$
Also, $f(a)=a-5 \therefore \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)$
Hence, the given function $f(x)=x-5$ is continuous at every point of its domain.

SOLUTION

(d) $f(x)=|x-5|$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}}|a+h-5|=|a-5|=a-5$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}|a-h-5|=|a-5|=a-5$
Also, $f(a)=|a-5|=a-5 \therefore \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)$
Hence, the given function $f(x)=|x-5|$ is continuous.
4. Prove that the function $f(x)=x^{n}$ is continuous at $\mathrm{x}=\mathrm{n}$, where n is a positive integer.

SOLUTION

Given, $f(x)=x^{n}, n \in N$ So, $\mathrm{f}(\mathrm{x})$ is a polynomial function and domain of f is $\mathrm{R} . \lim _{x \rightarrow n} f(x)=\lim _{x \rightarrow n} x^{n}=x^{n}=f(n)$
$\Rightarrow \mathrm{f}$ is continuous at $\mathrm{n} \in \mathrm{N}$.
5. Is the function f defined by $f(x)=\left\{\begin{array}{ll}x, & \text { if } \\ 5, & \text { if }\end{array} \quad x>1\right.$ continuous at $\mathrm{x}=0$? At $\mathrm{x}=1$? At $\mathrm{x}=2$?

SOLUTION

(i) At $\mathrm{x}=0, \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x)=0 \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x)=0$

Also, $f(0)=0$
Thus, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
Hence, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
(ii) At $\mathrm{x}=1, . \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x)=1 \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 5=5$
$\therefore \lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x)$
$\Rightarrow \mathrm{f}$ is discontinuous at $\mathrm{x}=1$.
(iii) At $\mathrm{x}=2, \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 5=5 \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 5=5$

Also, $\mathrm{f}(2)=5$
Thus $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$.
Direction : For questions (6-12), find all points of discontinuity of functionf(x). .
6. $f(x)= \begin{cases}2 x+3, & \text { if } x \leq 2 \\ 2 x-3, & \text { if } x>2\end{cases}$

SOLUTION

For $\mathrm{x}<2$, function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ is polynomial and hence, continuous. For $x>2$, function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$ is polynomial and hence, continuous.

For continuity at $\mathrm{x}=2$,
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2 x+3)=\lim _{\substack{x \rightarrow 2-h \\ h \rightarrow 0}}[2(2-h)+3]$
$=\lim _{\substack{x \rightarrow 2-h \\ h \rightarrow 0}}(4-2 h+3)=\lim _{\substack{x \rightarrow 2-h \\ h \rightarrow 0}}(7-2 h)=7$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(2 x-3)=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}}[2(2+h)-3]$
$=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}}(4+2 h-3)=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}}(1+2 h)=1$

Thus, $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x) \therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=2$.
So, the only point of discontinuity of f is 2 .
7. $f(x)= \begin{cases}|x|+3, & \text { if } x \leq-3 \\ -2 x, & \text { if }-3<x<3 \\ 6 x+2, & \text { if } x \geq 3\end{cases}$

SOLUTION

At $\mathrm{x}=3$:
$\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}}|x|+3=\lim _{\substack{x \rightarrow-3-h \\ h \rightarrow 0}}(|-3-h|+3)=|-3-0|+3=3+3=6$
$\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}}(-2 x)=\lim _{\substack{x \rightarrow-3+h \\ h \rightarrow 0}}(-2(-3+h 3))=-2(-3+0)=6 f(-3)=|-3|+3=3+3=6$
Thus, $\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{+}} f(x)=f(-3)$
$\therefore \mathrm{f}$ is continuous at $x=-3$.
At $\mathrm{x}=3$:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(-2 x)=\lim _{\substack{x \rightarrow 3-h \\ h \rightarrow 0}}(-2(3-h))=-2(3-0)=-6$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(6 x+2)=\lim _{\substack{x \rightarrow 3+h \\ h \rightarrow 0}}(6(3+h)+2)=6(3+0)+2=20$

Thus, $\lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x) \therefore f(x)$ is discontinuous at $\mathrm{x}=3$.
So, the only point of discontinuity of f is 3 .
8. $f(x)=\left\{\begin{array}{lll}\frac{|x|}{x}, & \text { if } & x \neq 0 \\ 0, & \text { if } & x=0\end{array}\right.$

SOLUTION

At $\mathrm{x}=0: \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}(-1)=-1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}}(1)=1$

Thus, $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x) \Rightarrow \mathrm{f}(\mathrm{x})$ is discontinuous at $x=0$.
So, the only point of discontinuity of f is 0 .
9. $f(x)= \begin{cases}\frac{x}{|x|}, \text { if } & x<0 \\ -1, \text { if } & x \geq 0\end{cases}$

SOLUTION

At $\mathrm{x}=0: \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x}$
$\lim _{x \rightarrow 0^{-}}(-1)=-1 \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(-1)=-1$

Thus, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
$\Rightarrow f(x)$ is continuous at $\mathrm{x}=0$.
So, $\mathrm{f}(\mathrm{x})$ has no point of discontinuity.
10. . $f(x)= \begin{cases}x+1, & \text { if } x \geq 1 \\ x^{2}+1, & \text { if } x<1\end{cases}$

SOLUTION

We observe that $\mathrm{f}(\mathrm{x})$ is continuous at all real numbers $x<1$ and $x>1$ as it is polynomial function.
Now, continuity at $\mathrm{x}=1$:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+1)=\lim _{x \rightarrow 1+h}(1+h)+1=2 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+1\right)=\lim _{x \rightarrow 1-h}(1-h)^{2}+1 \\
& =\lim _{\substack{x \rightarrow 1-h \\
h \rightarrow}}\left(1-2 h+h^{2}\right)+1=2 \text { Also, } \mathrm{f}(1)=2
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1)$
Hence, $f(x)$ is continuous at $x=1$ and at all points.
So, $f(x)$ has no point of discontinuity.
11. $f(x)= \begin{cases}x^{3}-3, & \text { if } x \leq 2 \\ x^{2}+1, & \text { if } x>2\end{cases}$

SOLUTION

We observe that $\mathrm{f}(\mathrm{x})$ is continuous at all real numbers $x<2$ and $x>2$ as it is polynomial function. Now, continuity at $\mathrm{x}=2$:
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+1\right)=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}}(2+h)^{2}+1$
$=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}}\left(4+4 h+h^{2}\right)+1=5$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}-3\right)=\lim _{\substack{x \rightarrow 2-h \\ h \rightarrow 0}}(2-h)^{3}-3$
$\lim _{\substack{x \rightarrow 2-h \\ h \rightarrow 0}}\left(2-12 h+6 h^{2}-h^{3}\right)-3=5$
Also, $f(2)=8-3=5 \therefore \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$

Hence, $f(x)$ is continuous at $x=2$ and at all points. So, f has no point of discontinuity.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE \& SAT

> www.mathstudy.in

Our Mathematics E-Books

(a) J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
(b) B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
(c) C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
(d) I.C.S.E. \& I.S.C.
*Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solved
-includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
(e) Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
(f) SAT - II Subject Mathematics (15 Papers - Fully Solved)

USE E-BOOKS \& SAVE ENVIRONMENT WWW.MATHSTUDY.IN

12. $f(x)= \begin{cases}x^{10}-1, & \text { if } x \leq 1 \\ x^{2}, & \text { if } x>1\end{cases}$

Weobserve thatf(x)is continuousat real numbers $\mathrm{x}<1$ and $\mathrm{x}>1$ as it is polynomial function. Now, continuity at $\mathrm{x}=1$:
L.H.L. $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{10}-1\right)=\lim _{\substack{x \rightarrow 1-h \\ h \rightarrow 0}}\left[(1-h)^{10}-1\right]=0$
R.H.L. $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}\right)=\lim _{\substack{x \rightarrow 1+h \\ h \rightarrow 0}}(1+h)^{2}=1$

Also, $f(1)=1^{10}-1=0 \therefore$ L.H.L. \neq R.H.L. $\neq f(1) \Rightarrow$ fis discontinuous at $\mathrm{x}=1$.
So, the only point of discontinuity of $f(x)$ is 1 .
13. Is the function defined by $f(x)=\left\{\begin{array}{ll}x+5, & \text { if } x \leq 1 \\ x-5, & \text { if } x>1\end{array}\right.$ a continuous function?

SOLUTION

We observe thatf (x) is continuous at all real numbers $x<1$ and $x>1$ as it is polynomial function. Now, continuity at $x=1$:
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x-5)=\lim _{\substack{x \rightarrow 1+h \\ h \rightarrow 0}}(1+h-5)=\lim _{\substack{x \rightarrow 1+h \\ h \rightarrow 0}}(h-4)=-4$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x+5)=\lim _{\substack{x \rightarrow 1-h \\ h \rightarrow 0}}(1-h+5)=\lim _{\substack{x \rightarrow 1-h \\ h \rightarrow 0}}(6-h)=6$

Thus, $\lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x) \therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$.
14. Discuss the continuity of the function f , where f is defined by $f(x)= \begin{cases}3, \text { if } & 0 \leq x \leq 1 \\ 4, \text { if } & 1<x<3 \\ 5, \text { if } & 3 \leq x \leq 10\end{cases}$

SOLUTION

At $\mathrm{x}=1:$ L.H.L. $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 3=3$ and
R.H.L. $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4=4 \therefore$ L.H.L. \neq R.H.L. at $x=1$.

At $\mathrm{x}=3$: L.H.L. $=\lim _{x \rightarrow 3^{-}} f(x)==\lim _{x \rightarrow 3^{-}} 4=4$ and
R.H.L. $==\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} 5=5$
L.H.L. \neq R.H.L. at $x=3$.

Thus, function is not continuous at $x=1$ and $x=3$.
15. $f(x)= \begin{cases}2 x, \text { if } & x<0 \\ 0, \text { if } & 0 \leq x \leq 1 \\ 4 x, \text { if } & x>1\end{cases}$

SOLUTION

At $\mathrm{x}=0:$ L.H.L. $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 2(0)=0$
R.H.L. $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} 0=0$

Also, $f(0)=0 \therefore$ L.H.L. $=$ R.H.L $=\mathrm{f}(\mathrm{x})$
So, $f(x)$ is continuous at $x=0$. At $x=1$:
L.H.L. $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 0=0$ and R.H.L. $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4(1)=4$

Also, $\mathrm{f}(1)=0 \therefore$ L.H.L. \neq R.H.L. So, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=1$.
16. $. f(x)= \begin{cases}-2, \text { if } & x \leq-1 \\ 2 x, \text { if } & -1<x \leq 1 \\ 2, \text { if } & x>1\end{cases}$

At $x=-1$:
R.H.L. $=\lim _{x \rightarrow-1^{+}} f(x)=\lim _{\substack{x \rightarrow-1+h \\ h \rightarrow 0}} 2(-1+h)=-2$
L.H.L. $=\lim _{x \rightarrow-1^{-}} f(x)=\lim _{\substack{x \rightarrow-1-h \\ h \rightarrow 0}}(-2)=-2$

Also, $f(-1)=-2 \therefore \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$
Hence, $f(x)$ is continuous at $\mathrm{x}=-1$. At $\mathrm{x}=1$:
R.H.L. $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(2)=2$
L.H.L $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{\substack{x \rightarrow 1-h \\ h \rightarrow 0}} 2(1-h)=2$

Also, $\mathrm{f}(1)=2 \therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$

Hence, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$.
17. Find the relationship between a and b so that the function f defined by $f(x)=\left\{\begin{array}{lll}a x+1, & \text { if } & x \leq 3 \\ b x+3, & \text { if } & x>3\end{array}\right.$ is continuous at $\mathrm{x}=3$.

SOLUTION

At $\mathrm{x}=3$:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(a x+1)=\lim _{\substack{x \rightarrow 3-h \\ h \rightarrow 0}}(a(3-h)+1)$
$=\lim _{x \rightarrow 3-h}(3 a-a h+1)=3 a+1$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}}(b x+3)=\lim _{\substack{x \rightarrow 3+h \\ h \rightarrow 0}}(b(3+h)+3)$
$=\lim _{\substack{x \rightarrow 3+h \\ h \rightarrow 0}}(3 b+b h+3)=3 b+3$ Also, $f(3)=3 a+1$

Thus, $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)$
$\mathrm{f}(\mathrm{x})$ is given as continuous at $x=3] \Rightarrow 3 b+3=3 a+1 \Rightarrow 2=3(a-b) \Rightarrow a-b=\frac{2}{3}$
This is the required relation between a and b.
18. For what value of λ is the function defined by $f(x)=\left\{\begin{array}{ll}\lambda\left(x^{2}-2 x\right), & \text { if } x \leq 0 \\ 4 x+1, & \text { if } x>0\end{array}\right.$ continuous at $\mathrm{x}=0$?

What about continuity at $\mathrm{x}=1$?

SOLUTION

Since $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$,
(i) $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \lambda\left(x^{2}-2 x\right)=\lambda(0-0)=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 4 x+1=4(0)+1=1$
As L.H.L. \neq R.H.L. $f(x)$ is continuous at $x=0$ for no value of λ.
(ii) At $\mathrm{x}=1: \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} 4 x+1=4 \times 1+1=5$ and $f(1)=4(1)+1=5$ Thus, $\lim _{x \rightarrow 1} f(x)=f(1)$ for any value of λ.

Hence, $f(x)$ is continuous at $x=1$ for any real value of λ.
19. Show that the function defined by $g(x)=x-[x]$ is discontinuous at all integral points. Here, $[x]$ denotes the greatest integer less than or equal to x.

SOLUTION

Let $n \in I$. Then, $\lim _{x \rightarrow n^{-}}[x]=n-1[$ and $g(n)=n-n=0$. [$[\mathrm{n}]=\mathrm{n}$ because $n \in I]$
Now, $\lim _{x \rightarrow n^{-}} g(x)=\lim _{x \rightarrow n^{-}}(x-[x])=\lim _{x \rightarrow n^{-}} x-\lim _{x \rightarrow n^{-}}[x]=n-(n-1)=1$
and $\lim _{x \rightarrow n^{+}} g(x)=\lim _{x \rightarrow n^{+}}(x-[x])=\lim _{x \rightarrow n^{+}} x-\lim _{x \rightarrow n^{+}}[x]=n-n=0$
Thus, $\lim _{x \rightarrow n^{-}} g(x) \neq \lim _{x \rightarrow n^{+}} g(x)$.

Hence, $\mathrm{g}(\mathrm{x})$ is discontinuous at all integral points.
20. Is the function defined by $f(x)=x^{2}-\sin x+5$ continuous at $x=\pi$?

SOLUTION

At $x=\pi$:
$\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{\substack{x \rightarrow \pi+h \\ h \rightarrow 0}}(\pi+h)^{2}-\sin (\pi+h)+5$
$=\lim _{\substack{x \rightarrow \pi+\\ h \rightarrow 0}}\left[\left(\pi^{2}+h^{2}+2 \pi h\right)+\sinh +5\right]=\pi^{2}+5$
$\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{\substack{x \rightarrow \pi-h \\ h \rightarrow 0}}\left[(\pi-h)^{2}-\sin (\pi-h)+5\right]$
$=\lim _{\substack{x \rightarrow \pi-h \\ h \rightarrow 0}}\left(\pi^{2}+h^{2}-2 \pi h\right)-\sin +5=\pi^{2}+5$ Also, $f(\pi)=\pi^{2}+5$

Thus, R.H.L. $=$ L.H.L. $=f(\pi)$. Function is continuous at $\mathrm{x}=\pi$.
21. Discuss the continuity of the following functions:
(a) $f(x)=\sin x+\cos x$
(b) $f(x)=\sin x-\cos x$
(c) $f(x)=\sin x \cdot \cos x$

SOLUTION

(a) Let a be an arbitrary real number. Then, $f(a)=\sin a+\cos a$

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\
h \rightarrow 0}}[\sin (a+h)+\cos (a+h)] \\
& =\lim _{\substack{x \rightarrow a+h \\
h \rightarrow 0}}\{(\sin a \cosh +\cos a \sinh)+(\cos a \cosh -\sin a \sinh)\} \\
& =\sin a(1)+\cos a(0)+\cos a(1)-\sin a(0)=\sin a+\cos a \\
& \lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\
h \rightarrow 0}}[\sin (a-h)+\cos (a-h)] \\
& =\lim _{\substack{x \rightarrow a-h \\
h \rightarrow 0}}[(\sin a \cosh -\cos a \sinh)+(\cos a \cosh +\sin a \sinh)]=\sin a(1)-\cos a(0)+\cos a(1)+\sin a(0)=\sin a+\cos a .
\end{aligned}
$$

$\therefore \lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a^{+}} f(x) \Rightarrow f(x)$ is continuous at $x=a . \therefore f(x)=\sin \mathrm{x}+\cos \mathrm{x}$ is everywhere continuous.
(b) Let a be an arbitrary real number. Then $f(a)=\sin a-\cos a$

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\
h \rightarrow 0}} \sin (a+h)-\cos (a+h) \\
& =\lim _{\substack{x \rightarrow a+h \\
h \rightarrow 0}}\{(\sin a \cosh +\cos a \sinh)-(\cos a \cosh -\sin a \sinh)\} \pi
\end{aligned}
$$

$=\sin a(1)+\cos a(0)-\cos a(1)+\sin a(0)=\sin a-\cos a$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}[(\sin (a-h)-\cos (a-h)]$
$=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}[(\sin a \cosh -\cos a \sinh)-(\cos a \cosh +\sin a \sinh)]$
$=\sin a(1)-\cos a(0)-\cos a(1)-\sin a(0)=\sin a-\cos a$.
$\therefore \lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a^{-}} f(x)$
$\Rightarrow \mathrm{f}(\mathrm{x})$ is continuous at $x=a . \therefore f(x)=\sin x-\cos x$ is everywhere continuous.
(c) Let a be an arbitrary real number. Then, $f(a)=\sin a \cos a$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}}[\sin (a+h) \cos (a+h)]$
$=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}}[(\sin a \cosh +\cos a \sinh)(\cos a \cosh -\sin a \sinh)]$
$=((\sin a(1)+\cos a(0)((\cos a)(1)-\sin a(0))=\sin a \cos a$.
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}[\sin (a-h) \cos (a-h)]$
$=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}}(\sin a \cosh -\cos a \sinh)(\cos a \cosh +\sin a \sinh)$
$=(\sin (a)(1)-\cos a(0))(\cos a(1)+\sin a(0)))=\sin a \cos a$
$\therefore \lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a^{+}} f(x)$.
$\Rightarrow f(x)$ is continuous at $x=a$. So, $\mathrm{f}(\mathrm{x})=\sin x \cdot \cos x$ is everywhere continuous.
22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

SOLUTION

(a) $f(x)=\cos x$. Clearly, domain of $f=R$

Let a be an arbitrary real number, then $f(a)=\cos a$.
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \cos (a-h)=\lim _{h \rightarrow 0}(\cos a \cosh +\sin a \sinh)=\cos a$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \cos (a+h)=\lim _{h \rightarrow 0}(\cos a \cosh -\sin a \sinh)=\cos a \therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a) \Rightarrow f(x)=\cos x$ is continuous at a for all $a \in R$.
(b) $f(x)=\operatorname{cosec} x \Rightarrow f(x)=\frac{1}{\sin x}$ and domain of $f=R-\{n \pi\}, n \in I$.

Also, $f(a)=\frac{1}{\sin a}$
$\lim _{x \rightarrow a^{+}} \frac{1}{\sin x}=\frac{1}{\lim _{\substack{x \rightarrow a+h \\ x \rightarrow 0}} \sin (a+h)}$
$=\lim _{\substack{x \rightarrow a+h \\ x \rightarrow 0}} \frac{1}{\sin a \cosh +\cos a \sinh }=\frac{1}{\sin a \cos 0+\cos a \sin (0)}$
$=\frac{1}{\sin a(1)+\cos a(0)}=\frac{1}{\sin a+0}=\frac{1}{\sin a}$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ x \rightarrow 0}} \frac{1}{\sin (a-h)}$
$=\lim _{\substack{x \rightarrow a-h \\ x \rightarrow 0}} \frac{1}{\sin a \cosh -\cos a \sinh }=\frac{1}{\sin a}$
$\therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$

Thus, $\operatorname{cosec} \mathrm{x}$ is continuous at a for all $a \in R-\{n \pi\}, n \in I$.
(c) $f(x)=\sec x \Rightarrow f(x)=\frac{1}{\cos x}$ Clearly, domain of $f=R-\left\{(2 n+1) \frac{\pi}{2}, n \in I\right\}$

Also, $f(a)=\frac{1}{\cos a}$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \frac{1}{\cos (a+h)}$
$=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \frac{1}{\cos a \cosh -\sin a \sinh }$
$=\frac{1}{\cos a \cos 0-\sin a \sin 0}=\frac{1}{\cos a(1)-\sin a(0)}=\frac{1}{\cos a}$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \frac{1}{\cos (a-h)}$
$=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \frac{1}{\cos a \cosh +\sin a \sinh }=\frac{1}{\cos a} \therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
Thus, sec x is continuous at a for all $a \in R-\left\{(2 n+1\} \frac{\pi}{2}, n \in I\right.$
(d) $f(x)=\cot x f(x)=\frac{1}{\tan x}$ and domain of $f=R-\{n \pi\}, n \in I$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \frac{1}{\tan (a+h)}$
$=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \frac{1}{\frac{\tan a+\tanh }{1-\tan a \tanh }}=\frac{1}{\frac{\tan a+0}{1-\tan a \tan 0}}=\frac{1}{\frac{\tan a}{1-0}}=\frac{1}{\tan a}$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \frac{1}{\tan (a-h)}=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \frac{1}{\frac{\tan a-\tanh }{1+\tan a \tanh }}=\frac{1}{\tan a}$
$\therefore \lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
Thus, $\cot \mathrm{x}$ is continuous at a for all $a \in R-n \pi, n \in I$.
23. Find all points of discontinuity of f, where
$f(x)=\left\{\begin{array}{ccc}\frac{\sin x}{x}, & \text { if } & x<0 \\ x+1, & \text { if } & x \geq 0\end{array}\right.$

SOLUTION

At $x=0, f(0)=1$
L.H.L. $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}} \frac{\sin (-h)}{-h}=1$
R.H.L. $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{\substack{x \rightarrow 0+h \\ h \rightarrow 0}}(h+1)=0+1=1$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$ Thus, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
When $x<0, \sin \mathrm{x}$ and x both are continuous. $\therefore \frac{\sin x}{x}$ is also continuous.
When $x>0, \mathrm{f}(\mathrm{x})=\mathrm{x}+1$ is a polynomial.
$\therefore \mathrm{f}(\mathrm{x})$ is continuous. So, $\mathrm{f}(\mathrm{x})$ is not discontinuous at any point.
24. Determine if f defined by $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{array}\right.$ a continuous function?

SOLUTION

We have, $f(0)=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}}(0-h)^{2} \sin \frac{1}{(0-h)}=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}}\left(-h^{2} \sin \frac{1}{h}\right)$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{\substack{x \rightarrow 0+h \\ h \rightarrow 0}}(0+h)^{2} \frac{1}{(0+h)}=\lim _{\substack{x \rightarrow 0+h \\ h \rightarrow 0}} h^{2} \sin \frac{1}{h}=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \Rightarrow \mathrm{f}$ is continuous at $\mathrm{x}=0$.
For $\mathrm{x} \neq 0, \mathrm{f}(\mathrm{x})$ is a continuous at every point. So, $\mathrm{f}(\mathrm{x})$ is a continuous function.
25. Examine the continuity off where f is defined by $f(x)=\left\{\begin{array}{lll}\sin x-\cos x, & \text { if } & x \neq 0 \\ -1, & \text { if } & x=0\end{array}\right.$

SOLUTION

We have
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}}[\sin (0-h)-\cos (0-h)]$
$=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}}(-\sinh -\cosh)=-(0)-1=-1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}}\left[\sin (0+h)-\cos (0+h)=\lim _{h \rightarrow 0}(\sinh -\cosh)\right.$
$\lim \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow a^{+}}[\sin (0+h)-\cos (0+h)]=$
$\lim (\sin \mathrm{A}-\cos)=0-1=-1$
Also, $\mathrm{f}(0)=-1 \therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
Hence, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$. At $x<0, \mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\cos \mathrm{x}$ is continuous
At $x>0, \mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\cos \mathrm{x}$ is also continuous $\therefore f(x)$ is continuous at all $x \in R$.
Find the values of \mathbf{k} so that the function is continuous at the indicated point in questions 26 to 29.
26. $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x}, & \text { if } \quad x \neq \frac{\pi}{2} \\ 3, & \text { if } x=\frac{\pi}{2}\end{array}\right.$ at $x=\frac{\pi}{2}$.

SOLUTION
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\lim _{\substack{x \rightarrow \frac{\pi}{2}-h \\ h \rightarrow 0}} \frac{k \cos \left(\frac{\pi}{2}-h\right)}{\pi-2\left(\frac{\pi}{2}-h\right)}$

$$
\begin{aligned}
& =\lim _{\substack{x \rightarrow \frac{\pi}{2}-h \\
h \rightarrow 0}} \frac{k \sinh }{\pi-\pi+2 h} \\
& =\lim _{\substack{x \rightarrow \frac{\pi}{2}-h \\
h \rightarrow 0}} \frac{k \sinh }{2 h}=\frac{k}{2} \lim _{\substack{\pi \\
x \rightarrow \frac{\pi}{2}-h \\
h \rightarrow 0}} \frac{\sinh }{h}=\frac{k}{2} \\
& \lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\lim _{\substack{x \rightarrow \frac{\pi}{2}+h \\
h \rightarrow 0}} \frac{k \cos \left(\frac{\pi}{2}+h\right)}{\pi-2\left(\frac{\pi}{2}+h\right)} \\
& =\lim _{\substack{x \rightarrow \frac{\pi}{2}+h \\
h \rightarrow 0}} \frac{-k \sinh }{-2 h} \\
& =\frac{k}{2} \lim _{\pi} \frac{\sinh }{h}=\frac{k}{2} \\
& \underset{\substack{x \rightarrow \frac{\pi}{2}+h \\
h \rightarrow 0}}{\substack{\text { n }}}
\end{aligned}
$$

Also, $f\left(\frac{\pi}{2}\right)=3$. For continuity at $x=\frac{\pi}{2}$, we have
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=f\left(\frac{\pi}{2}\right) \Rightarrow \frac{k}{2}=3 \Rightarrow k=6$
27. $f(x)=\left\{\begin{array}{lll}k x^{2} & \text { if } & x \leq 2 \\ 3, & \text { if } & x>2\end{array}\right.$ at $x=2$.

SOLUTION

We have, $f(2)=4 k$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}} 3=3$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{\substack{x \rightarrow 2-h \\ h \rightarrow 0}}(2-h)^{2} k=4 k$ For continuity at $\mathrm{x}=2$, we have $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow 4 k=3 \Rightarrow k=\frac{3}{4}$
28. $f(x)=\left\{\begin{array}{ll}k x+1, & \text { if } x \leq \pi \\ \cos , & \text { if } x>\pi\end{array}\right.$ at $x=\pi$.

SOLUTION
$\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{\substack{x \rightarrow \pi+h \\ h \rightarrow 0}} f(\pi+h)$
$=\lim _{\substack{x \rightarrow \pi+h \\ h \rightarrow 0}} \cos (\pi+h)=\lim _{\substack{x \rightarrow \pi+h \\ h \rightarrow 0}}-\cosh =-\cos (0)=-1$
$\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{\substack{x \rightarrow \pi-h \\ h \rightarrow 0}} k(\pi-h)+1=k \pi+1$ and $f(\pi)=k \pi+1$
Since the given function is continuous at $x=\pi$,
$\therefore \lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi^{-}} f(x)=f(\pi)$
$\Rightarrow k+1=-1 \Rightarrow k \pi=-1-1 \Rightarrow k \pi=-2 \Rightarrow k=\frac{-2}{\pi}$
29. $f(x)=\left\{\begin{array}{lll}k x+1, & \text { if } x \leq 5 \\ 3 x-5, & \text { if } & x>5\end{array}\right.$ at $x=5$

SOLUTION

$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}(k x+1)$
$=\lim _{\substack{x \rightarrow 5-h \\ h \rightarrow 0}}(k(5-h)+1)=k(5-0)+1=5 k+1$
$\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}(3 x-5)=\lim _{\substack{x \rightarrow 5+h \\ h \rightarrow 0}}(3(5+h)-5)=3(5+0)-5=10$
For continuity at $\mathrm{x}=5, \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5) \Rightarrow 5 k+1=10 \Rightarrow 5 k=9 \Rightarrow k=\frac{9}{5}$
30. Find the values of a and b such that the function defined by $f(x)=\left\{\begin{array}{ll}5, & \text { if } x \leq 2 \\ a x+b, & \text { if } 2<x<10 \\ 21, & \text { if } x \geq 10\end{array}\right.$ is a continuous function.

SOLUTION

Since f is continuous at all x , so f is continuous at $\mathrm{x}=2,10$.
At $\mathrm{x}=2: \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(5)=5$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(a x+b)$
$=\lim _{\substack{x \rightarrow 2+h \\ h \rightarrow 0}}(a(2+h)+b)=a(2+0)+b=2 a+b$ and $f(2)=5$
For continuity, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow 5=2 a+b=5 \Rightarrow 2 a+b=5 \ldots .$. (i)
At $\mathrm{x}=10: \lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{-}}(a x+b)$
$=\lim _{\substack{x \rightarrow 10+h \\ h \rightarrow 0}}(a(10-h)+b)=a(10-0)+b=10 a+b$
$\lim _{x \rightarrow 10^{+}} f(x)=\lim _{x \rightarrow 10^{+}}(21)=21 f(10)=21$
For continuity, $\lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{+}} f(x)=f(10)$
$\Rightarrow 10 a+b=21 \Rightarrow 10 a+b=21 \ldots$ (ii)
Subtracting (i) from (ii), we get $8 \mathrm{a}=16 \Rightarrow \mathrm{a}=2$
Putting $\mathrm{a}=2$ in (i), we get $2(2)+\mathrm{A}=5 \Rightarrow \mathrm{~b}=5-4=1$ Hence, $\mathrm{a}=2, \mathrm{~A}=1$.
31. Show that the function defined by $f(x)=\cos \left(x^{2}\right)$ is a continuous function.

SOLUTION

Let $\mathrm{f}(\mathrm{x})=\cos \left(x^{2}\right)$. Domain of $\mathrm{f}=\mathrm{R}$.
Let a be any arbitrary real number.
Then, $\lim _{x \rightarrow a^{+}} f(x)=\lim _{\substack{x \rightarrow a+h \\ h \rightarrow 0}} \cos (a+h)^{2}=\cos a^{2}$
Then, $\lim _{x \rightarrow a^{-}} f(x)=\lim _{\substack{x \rightarrow a-h \\ h \rightarrow 0}} \cos (a-h)^{2}=\cos a^{2}$ and $f(a)=\cos a^{2}$
Thus, $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a) \forall a \in R$.
$\therefore f(x)=\cos \left(x^{2}\right)$ is continuous at $a \forall a \in R$.
32. Show that the function defined by $f(x)=|\cos x|$ is a continuous function.

SOLUTION

We know that cosine finction is everywhere continuous and also modulus function is continuous. Therefore, $|\cos x|$ is everywhere continuous.
33. Examine that $\sin |x|$ is a continuous function.

SOLUTION

Let $f(x)=|x|$ and $g(x)=\sin x$. Then, $(g o f)(x)=g[f(x)]=g(|x|)=\sin |x|$
Now, f and g being continuous, it follows that their composite function (gof) is continuous.
34. Find all the points of discontinuity of f defined by $f(x)=|x|-|x+1|$.

SOLUTION

We have,
$f(x)= \begin{cases}-(x)-[-(x+1)], & \text { if } x<-1 \\ -(x)-(x+1), & \text { if }-1 \leq x<0 \\ (x)-(x+1), & \text { if } x \geq 0\end{cases}$
$\Rightarrow f(x)= \begin{cases}1, & \text { if } x<-1 \\ -2 x-1, & \text { if }-1 \leq x<0 \\ -1, & \text { if } x \geq 0\end{cases}$
At $x=-1: \lim _{x \rightarrow-1^{-}} f(x)=1$
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{\substack{x \rightarrow-1+h \\ h \rightarrow 0}}(-2(-1+h)-1)=1 f(-1)=-2(-1)-1=1$
Thus, $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=f(-1) \Rightarrow \mathrm{f}$ is continuous at $x=-1$

At $x=0$:
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-2 x-1)=\lim _{\substack{x \rightarrow 0-h \\ h \rightarrow 0}}(-2(-h)-1)=-1$
Also, $f(0)=-1$
Thus, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \Rightarrow \mathrm{f}$ is continuous at $x=0$. Also, f being a constant is continuous when
$x<-1$ or when $\mathrm{x}>0 . \therefore \mathrm{f}$ is continuous for all $x \in R$ Hence, there is no point of discontinuity.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE \& SAT

> www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
3. C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
4. I.C.S.E. \& I.S.C.
\star Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

