K NCERT - Exercise 6.4

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal. (i) $\sqrt{25.3}$

(ii) $\sqrt{49.5}$

(iii) $\sqrt{0.6}$

(iv) $(0.009)^{1/3}$

- (v) $(0.999)^{1/10}$
- (vi) (15)¹¹⁴
- (vii) (26)^{1/3}
- (viii) (255)^{1/4}
- (ix) $(82)^{1/4}$
- (x) $(401)^{1/2}$
- (xi) (0.0037)^{1/2}
- (xii) (26.57)^{1/3}
- (xiii) (81.5)^{1/4}
- (xiv) (3.968)^{3/2}
- (xv) $(32.15)^{1/5}$

SOLUTION

(i) Let
$$y = \sqrt{x}, x = 25, \Delta x = 0.3$$

 $\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}, \text{ and } \Delta y = \left(\frac{dy}{dx}\right) \Delta x = \left(\frac{1}{2\sqrt{x}}\right) \Delta x = \frac{1}{2\times5} \times 0.3 = 0.03$
Also $\Delta y = \sqrt{x + \Delta x} - \sqrt{x} \Rightarrow 0.03 = \sqrt{253} - \sqrt{25} \Rightarrow \sqrt{253} = 0.03 + 5 = 5.030$
(ii) Let $y = \sqrt{x}, \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ and $\Delta y = \left(\frac{dy}{dx}\right) \Delta x = \left(\frac{1}{2\sqrt{49}}\right) 0.5 = \frac{1}{14} \times 0.5$
Also, $\Delta y = \sqrt{x + \Delta x} - \sqrt{x}$
 $\Rightarrow \frac{0.5}{14} = \sqrt{495} - 7$, or $\sqrt{495} = \frac{5}{140} + 7 = 7 + 0.036 = 7.036$
(iii) Let $y = \sqrt{x}, \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ and $\Delta y = \left(\frac{dy}{dx}\right) \Delta x$
 $\Rightarrow \Delta y = \frac{1}{2\sqrt{064}} \times \Delta r = \frac{1}{2(0.8)} \times (-0.04) = \frac{-0.04}{16} = -0.025$
Also, $\Delta y = \sqrt{x + \Delta x} - \sqrt{x} - 0.025 = \sqrt{0.6} - \sqrt{0.64}$ or $\sqrt{0.6} = 0.8 - 0.025 = 0.775$

(iv) Let
$$y = x^{1/3}$$
, $x = 0.008$, $\Delta x = 0.001$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{3}x^{-2/3} \text{ and } \Delta y = \left(\frac{dy}{dx}\right)\Delta x$$

$$= \frac{1}{3}(0.008)^{-2/3}(0.001) = \frac{1}{3(0.2)^{3\times(2/3)}} \times 0.001 = \frac{1}{3(0.04)} \times 0.001 = \frac{0.001}{0.12} = \frac{1}{120} = 0.008$$
Also, $\Delta y = \sqrt[3]{x + \Delta x} - \sqrt[3]{x} \Rightarrow 0.008 = \sqrt[3]{0009} - \sqrt[3]{0008} \Rightarrow \sqrt[3]{0009} = 0.008 + 0.2 = 0.208$

(v) Let
$$y = x^{1/10}, x = 1, \Delta x = -0.001 \Rightarrow \frac{dy}{dx} = \frac{1}{10}x^{-9/10} \text{ and } \Delta y = \left(\frac{dy}{dx}\right)\Delta x$$

$$\Rightarrow \Delta y = \frac{1}{10x^{9/10}} \times (-0.001) = \frac{-0.001}{10(1)^{9/10}} = \frac{-0.001}{10} = -0.0001$$

Also, $\Delta y = (x + \Delta x)^{1/10} - (x)^{1/10} \Rightarrow -0.0001 = (0.999)^{1/10} - (1)^{1/10}$
 $\Rightarrow (0.999)^{1/10} = 1 - 0.0001 = 0.999$

(vi) Let
$$y = x^{1/4}$$
, $x = 16$, $\Delta x = -1 \Rightarrow \frac{dy}{dx} = \frac{1}{4}x^{-3/4}$ and $\Delta y = \left(\frac{dy}{dx}\right)\Delta x$
 $\Rightarrow \Delta y = \left(\frac{1}{4}x^{-3/4}\right)(-1) = \left(\frac{-1}{4(16)^{3/4}}\right) = \frac{-1}{4 \times 2^3} = \frac{-1}{32} = -0.03125$
Also $\Delta y = (x + \Delta x)^{1/4} - (x)^{1/4} \Rightarrow -0.03125 = (15)^{1/4} - (16)^{1/4} \Rightarrow (15)^{1/4} = -0.03125 + 2 = 1.96875 \cong 1.969$

• *

(vii) Let
$$y = x^{1/3}, x = 27, \Delta x = -1 \Rightarrow \frac{dy}{dx} = \frac{1}{3}x^{-2/3}$$
 and $\Delta y = \left(\frac{dy}{dx}\right)\Delta x$
 $\Rightarrow \Delta y = \left(\frac{1}{3}x^{-2/3}\right)(-1) = \left(\frac{-1}{3(27)^{2/3}}\right) = \frac{-1}{3 \times 9} = \frac{-1}{27} = -0.037$
Also, $\Delta y = (x + \Delta x)^{1/3}, (x)^{1/3} \Rightarrow -0.0370 = (26)^{1/3}, (27)^{1/3} \Rightarrow (26)^{1/3} = -1.0373$

AIso,
$$\Delta y = (x + \Delta x)^{1/3} - (x)^{1/3} \Rightarrow -0.0370 = (26)^{1/3} - (27)^{1/3} \Rightarrow (26)^{1/3} = 3 - 0.037 = 2.96$$

(viii) Let
$$y = x^{1/4}, x = 256, \Delta x = -1$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{4}x^{-3/4} \text{ and } \Delta y = \left(\frac{dy}{dx}\right)\Delta x$$

$$\Rightarrow \Delta y = \left(\frac{1}{4}x^{-3/4}\right)(-1) = \left(\frac{-1}{4(256)^{3/4}}\right) = \frac{-1}{4 \times 64} = \frac{-1}{256} \text{ Also, } \Delta y = (x + \Delta x)^{1/4} - (x)^{1/4}$$

$$\Rightarrow \frac{-1}{256} = (255)^{1/4} - (256)^{1/4} \Rightarrow (255)^{1/4} = 4 - \frac{1}{256} = \frac{1023}{256} = 3.996$$

(ix) Let
$$y = x^{1/4}$$
, $\Rightarrow \frac{dy}{dx} = \frac{1}{4x^{3/4}}$ and $\Delta y = \left(\frac{dy}{dx}\right)\Delta x$
 $\Rightarrow \Delta y = \left(\frac{1}{4(81)^{3/4}}\right)(1) = \frac{1}{4(27)} = \frac{1}{108}$
Also, $\Delta y = (x + \Delta x)^{1/4} - (x)^{1/4}$

$$\Rightarrow \frac{1}{108} = (82)^{1/4} - (81)^{1/4} \Rightarrow (82)^{1/4} = 3 + \frac{1}{108} = 3.009$$

(x) Let
$$y = x^{1/2}$$
, $x = 400$, $\Delta x = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{2x^{1/2}}$ and $\Delta y = \left(\frac{dy}{dx}\right)\Delta x$
 $\Rightarrow \Delta y = \left(\frac{1}{2x^{1/2}}\right)(1) = \frac{1}{2x^{1/2}} = \frac{1}{2x^{1/2}}$

$$\Rightarrow \Delta y = \left(\frac{1}{2(400)^{1/2}}\right)^{(1)} = \frac{1}{2(20)} = \frac{1}{40}$$

Also, $\Delta y = (x + \Delta x)^{1/2} - (x)^{1/2} \Rightarrow \frac{1}{40} = (401)^{1/2} - (400)^{1/2}$

$$\Rightarrow (401)^{1/2} = 20 + \frac{1}{40} = 20.025. \text{ (xi) Let } y = x^{1/2}, x = 0.0036, \Delta x = 0.0001 \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \text{ and } \Delta y = \left(\frac{dy}{dx}\right) \Delta x$$
$$\Rightarrow \Delta y = \frac{1}{2(0.0036)^{1/2}} \times (0.0001) = \frac{0.0001}{2(0.06)} = \frac{1}{1200}$$

Also, $\Delta y = (x + \Delta x)^{1/2} - (x)^{1/2} \Rightarrow \frac{1}{1200} = (0.0037)^{1/2} - (0.0036)^{1/2} \Rightarrow (0.0037)^{1/2} = (0.0036)^{1/2} + \frac{1}{1200} = 0.06 + \frac{1}{1200} = 0.06083 \cong 0.061$

(xii) Let
$$y = x^{1/3}$$
, $x = 27$, $\Delta x = -0.43$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{3x^{2/3}} \text{ and } \Delta y = \left(\frac{dy}{dx}\right) \Delta x \Rightarrow \Delta y = \left(\frac{1}{3(27)^{2/3}}\right) (-0.43) = \frac{-0.43}{3(9)} = \frac{-0.43}{27} = -0.015926$$
Also, $\Delta y = (x + \Delta x)^{1/3} - (x)^{1/3} \Rightarrow -0.015926 = (26.57)^{1/3} - (27)^{1/3} \Rightarrow (26.57)^{1/3} = -0.015926 + 3 = 2.984$
(xiii) Let $y = x^{1/4}$, $x = 81$, $\Delta x = 0.5 \Rightarrow \frac{dy}{dx} = \frac{1}{4x^{3/4}}$ and $\Delta y = \left(\frac{dy}{dx}\right) \Delta x$

$$\Rightarrow \Delta y = \left(\frac{1}{4(81)^{3/4}}\right) (0.5) = \frac{1}{4 \times 3^3} \times 0.5 = \frac{0.5}{108} = \frac{5}{1080}$$
Also, $\Delta y = (x + \Delta x)^{1/4} - (x)^{1/4} \Rightarrow \frac{5}{1080} = (81.5)^{1/4} - (81)^{1/4} \Rightarrow (81.5)^{1/4} = 3 + \frac{5}{1080} = 3.0046 \approx 3.005$
(xiv) Let $y = x^{3/2}$, $x = 4$, $\Delta x = -0.032 \Rightarrow \frac{dy}{dx} = \frac{3x^{1/2}}{2}$ and $\Delta y = \left(\frac{dy}{dx}\right) \Delta x$

$$\Rightarrow \Delta y = \frac{3}{2}(2) \times (-0.032) = -0.096$$
 Also, $\Delta y = (x + \Delta x)^{3/2} - (x)^{3/2} \Rightarrow -0.096 = (3.968)^{3/2} - (4)^{3/2} \Rightarrow (3.968)^{3/2} = 8 - 0.096 = 7.904$
(xv) Let $y = x^{1/5}$, $x = 32$, $\Delta x = 0.15 \Rightarrow \frac{dy}{dx} = \frac{1}{5x^{4/5}}$ and $\Delta y = \left(\frac{dy}{dx}\right) \Delta x$

$$\Rightarrow \Delta y = \frac{1}{5(32)^{4/5}} \times (0.15) = \frac{1}{5(16)} \times 0.15 = \frac{15}{8000}$$
Also, $\Delta y = (x + \Delta x)^{1/5} - (x)^{1/5} \Rightarrow \frac{15}{8000} = (32.15)^{1/5} - (32)^{1/6} \Rightarrow \& (32.15)^{1/5} = \frac{15}{8000} + 2 = 2.00187$
Find the approximate value of $f(2.01)$, where $f(x) = 4x^2 + 5x + 2$.
SOLUTION
We have, $f(x) = 4x^2 + 5x + 2 \Rightarrow f'(x) = 8x + 5$

Also,
$$f(x + \Delta x) \approx f(x) + \Delta x f'(x)$$

2.

Also, $f(x + \Delta x) \approx f(x) + \Delta x f'(x)$ Taking x = 2 and $\Delta x = 0.01$, we get $f(2.01) \approx f(2) + (0.01) f'(2) = (4 \times 2^2 + 5 \times 2 + 2) + \frac{1}{100}(8 \times 2 + 5) = 28.21$ $\Rightarrow f(2.01) \approx 28.21$ 3. Find the approximate value of f(5.001), where $f(x) = x^3 - 7x^2 + 15$. SOLUTION

Given,
$$f(x) = x^3 - 7x^2 + 15\& \Rightarrow f'(x) = 3x^2 - 14x$$

Also, $f(x + \Delta x) \approx f(x) + \Delta x f'(x)$
Taking $x = 5$ and $\Delta x = 0.001$, we get $f(5.001) \approx 5^3 - 7 \cdot 5^2 + 15 + (0.001) (3 \cdot 5^2 - 14 \cdot 5)$
 $= 125 - 175 + 15 + \frac{1}{100}(5) = -35 + 0.005 = -34.995$

4. Find the approximate change in the volume V of a cube of side x metres caused by increasing the side by 1%. SOLUTION

We have
$$V = x^3 \Rightarrow \frac{dV}{dx} = 3x^2$$
 and $\Delta V = \left(\frac{dV}{dx}\right)\Delta x = 3x^2\left(\frac{x}{100}\right)$
= $\frac{3x^3}{100}$. Change in volume = $0.03x^3m^3$

5. Find the approximate change in the surface area of a cube of side *x* metres caused by decreasing the side by 1%. **SOLUTION**

Surface area *S* of given cube ,
$$S = 6x^2 \Rightarrow \frac{dS}{dx} = 12x$$

Hence, $\Delta S \approx 12x\Delta x = 12x \left(-\frac{x}{100}\right)$
 $= -\frac{12x^2}{100}m^2$. Change in surface area = $0.12x^2m^2$

6. If the radius of a sphere is measured as 7m with an error of 0.02m, then find the approximate error in calculating its volume. **SOLUTION**

The volume V of a sphere of radius r is $V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dr} = \left(\frac{4}{3}\pi\right)(3r^2) = 4\pi r^2$

Let Δr be error in measuring radius $\Rightarrow r = 7m$ and $\Delta r = 0.02m$. Hence, $\Delta V \approx (4\pi r^2) \Delta r = (4\pi (7^2)) (\pm 0.02) m^3 = \pm 3.92\pi m^3$ \therefore Error in calculating the volume $= \pm 3.92\pi m^3$

7. If the radius of a sphere is measured as 9m with an error of 0.03m, then find the approximate error in calculating its surface area. **SOLUTION**

The surface area S of a sphere of radius r is given by $S = 4\pi r^2 \Rightarrow \frac{dS}{dr} = 8\pi r$

Let Δr be the error in measuring radius $\Rightarrow r = 9, \Delta r = 0.03$

Hence, $\Delta S \approx (8\pi r) \Delta r = \{8\pi (9m)\} (\pm 0.03m) = \pm (2.16\pi) \text{ m}^2$ Error in calculating the surface area = $\pm 2.16\pi \text{m}^2$.

- 8. If $f(x) = 3x^2 + 15x + 5$, then the approximate value of f(3.02) is
 - (A) 47.66
 - (B) 57.66
 - (C) 67.66
 - (D) 77.66

SOLUTION

(D) Given, $f(x) = 3x^2 + 15x + 5 \Rightarrow f'(x) = 6x + 15$ Also, $f(x + \Delta x) \approx f(x) + \Delta x f'(x)$, Taking x = 3 and $\Delta x = 0.02$, we get $f(3.02) \approx 3 \times 3^2 + 15 \times 3 + 5 + 0.02 (6 \times 3 + 15) = 77 + 0.66$ $\Rightarrow f(3.02) \approx 77.66$

9. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is (A) $0.06x^3m^3$

(h) $0.6x^3 m^3$ (C) $0.09x^3 m^3$ (D) $0.9x^3 m^3$ SOLUTION

(C) We know that the volume V of a cube with edge x is given by $V = x^3 \Rightarrow \frac{dV}{dx} = 3x^2$

Hence,
$$\Delta V \approx 3x^2 \Delta x = 3x^2 \left(\frac{3}{100}x\right) = \frac{9x^3}{100}$$

: Approximate change in volume =
$$\frac{9x^3}{100}$$
m³ = 0.09x³m³

🌮 Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE & SAT

www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)

★ Chapter Tests (Full Syllabus- Fully Solved)

★ Twenty Mock Tests (Full Length - Fully Solved)

2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)

3. C.BS.E.

★ Work-Book Class XII (Fully Solved)

★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Past Fifteen Years Topicwise Questions (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

4. I.C.S.E. & I.S.C.

★Work-Book Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)

6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

USE E-BOOKS & SAVE ENVIRONMENT WWW.MATHSTUDY.IN