NCERT - Exercise 6.3

1. Find the slope of the tangent to the curve $y=3 x^{4}-4 x$ at $x=4$.

SOLUTION

We have, $y=3 x^{4}-4 x$ (i)
Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=3 \cdot 4 x^{3}-4 \cdot 1=12 x^{3}-4 \therefore$ Slope of tangent at $x=4$ is $\left(\frac{d y}{d x}\right)_{x=4}=12 \times(4)^{3}-4=764$
2. Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $x=10$.

SOLUTION

We have, $y=\frac{x-1}{x-2}, x \neq 2$ (i) Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=\frac{(x-2) \cdot 1-(x-1) \cdot 1}{(x-2)^{2}}=\frac{-1}{(x-2)^{2}}$
\therefore Slope of tangent at $x=10$ is $\left(\frac{d y}{d x}\right)_{x=10}=\frac{-1}{(10-2)^{2}}=-\frac{1}{64}$
3. Find the slope of the tangent to curve $y=x^{3}-x+1$ at the point whose x-coordinate is 2 .

SOLUTION

We have, $y=x^{3}-x+1$ (i)
Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=3 x^{2}-1 \therefore$ Slope of tangent at $x=2$ is $\left(\frac{d y}{d x}\right)_{x=2}=3(2)^{2}-1=11$
4. Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x-coordinate is 3 .

SOLUTION

We have, $y=x^{2}-3 x+2$ (i)
Differentiating (i) w.r.t x, we get $\frac{d y}{d x}=3 x^{2}-3 \therefore$ Slope of tangent at $x=3$ is $\left(\frac{d y}{d x}\right)_{x=3}=3 \times 3^{2}-3=24$.
5. Find the slope of the normal to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.

SOLUTION

We have $x=a \cos ^{3} \theta$ (i) $y=a \sin ^{3} \theta$ (ii)
Differentiating (i) \& (ii) w.r.t θ, we get $\frac{d x}{d \theta}=3 a \cos ^{2} \theta(-\sin \theta)=-3 a \cos ^{2} \theta \sin \theta$

$$
\frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{3 a \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta}=-\tan \theta
$$

\therefore Slope of normal at $\theta=\frac{\pi}{4}$ is $\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}}=\frac{-1}{-\tan (\pi / 4)}=1$
6. Find the slope of the normal to the curve $x=1-a \sin \theta, y=b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.

SOLUTION

We have $x=1-a \sin \theta$ and (i) $y=b \cos ^{2} \theta$

Application of Derivatives

Differentiating (i) \& (ii) w.r.t θ, we get $\frac{d x}{d \theta}=0-a \cos \theta=-a \cos \theta$ and
$\frac{d y}{d \theta}=2 b \cos \theta(-\sin \theta)=-2 b \sin \theta \cos \theta$ So, $\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{-2 b \cos \theta(\sin \theta)}{-a \cos \theta}=\frac{2 b}{a} \sin \theta$
\therefore Slope of normal at $\theta=\frac{\pi}{2}$ is $\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\pi / 2}}$
$=\frac{-1}{\frac{2 b}{a} \sin \left(\frac{\pi}{2}\right)}=\frac{-a}{2 b}$
7. Find points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to the x-axis.

SOLUTION

We have, $y=x^{3}-3 x^{2}-9 x+7$ (i)
Differentiating (i) w.r.t x, we get $\frac{d y}{d x}=3 x^{2}-6 x-9$
Now, tangent to (i) is parallel to $x-$ axis $\Rightarrow \frac{d y}{d x}=0 \Rightarrow 3 x^{2}-6 x-9=0 \Rightarrow x^{2}-2 x-3=0$
$\Rightarrow(x-3)(x+1)=0 \Rightarrow x=3,-1$
When $x=3$, the from (i), we get $y=3^{3}-3 \cdot\left(3^{2}\right)-9 \cdot 3+7=27-27-27+7=-20$
When $x=-1$, then from (i), we get $y=(-1)^{3}-3(-1)^{2}-9(-1)+7=-1-3+9+7=12$
Hence, the required points are $(3,-20)$ and $(-1,12)$.
8. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.

SOLUTION

Equation of given curve is $y=(x-2)^{2}$ (i) $\Rightarrow \frac{d y}{d x}=2(x-2)$ Slope of chord joining the points $(2,0)$ and $(4,4)$ is $\frac{4-0}{4-2}=\frac{4}{2}=2$
For the points at which tangent is parallel to the chord joining points $(2,0)$ and $(4,4)$, we must have $\frac{d y}{d x}=$ slope of the chord $\Rightarrow 2(x-2)=2 \Rightarrow x-2=1 \Rightarrow x=3$
When $x=3$, then from (i), we get $y=(3-2)^{2}=1 \therefore$ Required point is $(3,1)$
9. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is $y=x-11$.

SOLUTION

We have, $y=x^{3}-11 x+5$ (i) and $y=x-11$ (ii)
Slope of (ii) is 1 (iii)
From (i), $\frac{d y}{d x}=3 x^{2}-11$ Slope of tangent is $\frac{d y}{d x}=1[$ from(iii) $] \Rightarrow 3 x^{2}-11=1 \Rightarrow x= \pm 2$
When $x=2$, then from (i), $y=2^{3}-11 \times 2+5=-9$ When $x=-2$, then from (i), $y=(-2)^{3}-11(-2)+5=19$
So, we find that at $(2,-9)$ and at $(-2,19)$ the slope of tangent is 1 .
But only $(2,-9)$ satisfies given equation of tangent. \therefore The point at which the line (ii) is tangent is $(2,-9)$.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE \& SAT

Application of Derivatives

www.mathstudy.in

Our Mathematics E-Books

(a) J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
(b) B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
(c) C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
(d) I.C.S.E. \& I.S.C.
\star Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
(e) Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
(f) SAT - II Subject Mathematics (15 Papers - Fully Solved)

USE E-BOOKS \& SAVE ENVIRONMENT WWW.MATHSTUDY.IN

10. Find the equations of all lines having slope -1 that are tangents to the curve $y=\frac{1}{x-1}, x \neq 1$.

SOLUTION

We have, $y=\frac{1}{x-1}, x \neq 1$ (i)
Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=\frac{-1}{(x-1)^{2}}$
For tangents having slope $=-1$, we must have- $1=\frac{-1}{(x-1)^{2}} \Rightarrow(x-1)^{2}=1 \Rightarrow x-1= \pm 1 \Rightarrow x=1 \pm 1=2,0$
When $x=2$, then from (i), $y=\frac{1}{2-1}=1 \therefore$ The point is $(2,1)$.
Equation of tangent at $(2,1)$ is $y-1=-1(x-2)$, or $x+y-3=0$ When $x=0$, then from (i), $y=\frac{1}{0-1}=-1 \therefore$
The point is $(0,-1)$. Equation of tangent at $(0,-1)$ is $y-(-1)=-1(x-0)$, or $x+y+1=0$
\therefore Required tangents are $x+y-3=0$ and $x+y+1=0$.
11. Find the equations of all lines having slope 2 which are tangents to the curve $y=\frac{1}{x-3}, x \neq 3$.

SOLUTION

The given curve is $y=\frac{1}{x-3}$ (i)
Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=\frac{-1}{(x-3)^{2}}$
For tangents having slope 2 , we must have $2=\frac{-1}{(x-3)^{2}} \Rightarrow(x-3)^{2}=-\frac{1}{2} \Rightarrow 2(x-3)^{2}=-1 \Rightarrow 2 x^{2}-12 x+19=0$
$\Rightarrow x=\frac{12 \pm \sqrt{144-152}}{4} \Rightarrow x=\frac{12 \pm \sqrt{-8}}{4}$ which is not possible as being imaginary number.
Hence, there is no tangent.
12. Find the equations of all lines having slope 0 which are tangents to the curve $y=\frac{1}{x^{2}-2 x+3}$.

SOLUTION

We have, $y=\frac{1}{x^{2}-2 x+3}$ (i)
Differentiating (i), w.r.t. x, we get $\frac{d y}{d x}=\frac{-1}{\left(x^{2}-2 x+3\right)^{2}} \frac{d}{d x}\left(x^{2}-2 x+3\right)=\frac{-(2 x-2)}{\left(x^{2}-2 x+3\right)^{2}}$
For tangents having slope 0 , we must have $\frac{d y}{d x}=0 \Rightarrow \frac{-(2 x-2)}{\left(x^{2}-2 x+3\right)}=0 \Rightarrow 2 x-2=0 \Rightarrow x=1$
When $x=1, y=\frac{1}{1^{2}-2 \cdot 1+3}=\frac{1}{2}\left(\right.$ using (i)) \therefore The tangent to the curve (i) at $\left(1, \frac{1}{2}\right)$ with slope 0 will be given by $y-\frac{1}{2}=$ $0(x-1)$, or $2 y-1=0$, or $y=\frac{1}{2}$
13. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are
(i) parallel to x-axis
(ii) parallel to y-axis.

SOLUTION

We have, $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ (1)
Differentiating (1) w.r.t. x, we get $\frac{2 x}{9}+\frac{1}{16}\left(2 y \frac{d y}{d x}\right)=0 \Rightarrow \frac{y}{8} \frac{d y}{d x}=-\frac{2 x}{9}$
$\Rightarrow \frac{d y}{d x}=-\frac{16 x}{9 y}(2)$
(i) For tangents parallel to x-axis, we must have $\frac{d y}{d x}=0 \Rightarrow-\frac{16 x}{9 y}=0=x=0$

When $x=0$, then from (1), $\frac{0^{2}}{9}+\frac{y^{2}}{16}=1 \Rightarrow y^{2}=16 \Rightarrow y= \pm 4$
\therefore The points on (1) at which the tangents are parallel to x-axis are $(0, \dot{4})$ and $(0,-4)$. (ii) For tangents parallel to y-axis, we must have $\frac{d x}{d y}=0$
$\Rightarrow-\frac{9 y}{16 x}=0 \Rightarrow y=0$
When $y=0$, then from (1), $\frac{x^{2}}{9}+\frac{0^{2}}{16}=1 \Rightarrow x^{2}=9 \Rightarrow x= \pm 3$
\therefore The points on (1) at which the tangents are parallel to y-axis are $(3,0)$ and $(-3,0)$.
14. Find the equations of the tangent and normal to the given curves at the indicated points: (i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
(ii) $y=x^{4}-d+13 x^{2}-10 x+5$ at $(1,3)$
(iii) $y=x^{3}$ at $(1,1)$
(iv) $y=x^{2}$ at $(0,0)$
(v) $x=\cos t, y=\sin t$ at $t=\frac{\pi}{4}$.

SOLUTION

(i) We have, $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$
(1) Differentiating (1) w.r.t. x, we get $\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10 \therefore$ Slope of tangent at $(0,5)$ is $\left(\frac{d y}{d x}\right)_{(0,5)}=-10$

So, equation of the tangent to (1) at $(0,5)$ is $y-5=-10(x-0)$, or $10 x+y-5=0$
Again, the slope of normal at $(0,5)=\frac{-1}{\text { Slope of tangent }}=\frac{-1}{-10}=\frac{1}{10}$.
So, equation of the normal to (1) at $(0,5)$ is $y-5=\frac{1}{10}(x-0)$, or $x-10 y+50=0$
(ii) We have, $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ (1)

Differentiating (1) w.r.t. x, we get $\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10 \therefore$ Slope of tangent at $(1,3)$ is $\left(\frac{d y}{d x}\right)_{(1,3)}=4-18+26-10=2$
So, equation of the tangent to (1) at $(1,3)$ is $y-3=2(x-1)$ or $2 x-y+1=0$
Again, the slope of normal at $(1,3)=\frac{-1}{\text { Slope of tangent }}=\frac{-1}{2}$
Hence, the equation of the normal to (1) at $(1,3)$ is $y-3=-\frac{1}{2}(x-1)$, or $x+2 y-7=0$ (1)
(iii) We have, $y=x^{3}$ (1)

Differentiating (1) w.r.t. x, we get $\frac{d y}{d x}=3 x^{2}$
So, slope of the tangent to (1) at $(1,1)$ is $\left(\frac{d y}{d x}\right)_{(1,1)}=3(1)^{2}=3 \therefore$ The equation of the tangent to (1) at $(1,1)$ is $y-1=3(x-1)$
or $3 x-y-2=0$ Again, the slope of normal at $(1,1)=\frac{-1}{\text { Slope of tangent }}=\frac{-1}{3}$
Hence, the equation of the normal to(1) at $(1,1)$ is $y-1=-\frac{1}{3}(x-1)$ or $x+3 y-4=0$
(iv) The given curve is $y=x^{2}$ (1) Differentiating (1) w.r.t. x, we get $\frac{d y}{d x}=2 x$

The slope of the tangent to (1) at $(0,0)=\left(\frac{d y}{d x}\right)_{(0,0)}=2 \times 0=0$
So , the equation of the tangent to (1) at $(0,0)$ is $y-0=0(x-0)$ or $y=0$
The equation of the normal line to (1) at $(0,0)$ is $(y-0)=-\frac{1}{\left(\frac{d y}{d x}\right)_{(0,0)}}(x-0)$
$y\left(\frac{d y}{d x}\right)_{(0,0)}=-x \Rightarrow y(0)=-x \Rightarrow x=0$
Alternately, tangent at $(0,0)$ is parallel to x-axis, therefore, normal to (1) at $(0,0)$ is parallel to y-axis and its equation is $x=0$. (Line through $(0,0)$ and parallel to y-axis is $x=0$)
(v) We have, $x=\cos t, y=\sin t(1) \Rightarrow \frac{d x}{d t}=-\sin t, \frac{d y}{d t}=\cos t$

The point on the curve at $t=\frac{\pi}{4}$ is $\left(\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right)$ or $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Also, the slope of the tangent at $t=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\cos t}{-\sin t}=-\cot t$
\therefore Slope of the tangent to (1) at $t=\frac{\pi}{4}$ is $-\cot (\pi / 4)=-1$.
So, the equation of the tangent to (1) at $t=\frac{\pi}{4}$ is $y-\frac{1}{\sqrt{2}}=-1\left(x-\frac{1}{\sqrt{2}}\right)$ or $x+y-\frac{2}{\sqrt{2}}=0$ or $x+y-\sqrt{2}=0$
Also, the slope of the normal to (1) at $t=\frac{\pi}{4}$ is $\frac{-1}{\text { Slope of tangent }}=\frac{-1}{-1}=1$
\therefore The equation of the normal to (1) at $t=\frac{\pi}{4}$ is $y-\frac{1}{\sqrt{2}}=1\left(x-\frac{1}{\sqrt{2}}\right)$ or $x-y=0$
15. . Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$, which is
(a) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$.

SOLUTION

We have, $y=x^{2}-2 x+7$ (i) Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=2 x-2$
(a) The slope of the tangent to the curve (i) is $2 x-2$ Slope of line $2 x+y-9=0$ is 2 Since the tangent is parallel to the line $2 x+y-9=0, \therefore$ Their slopes are equal $\Rightarrow 2 x-2=2 \Rightarrow x=2$ Putting $x=2$ in (i), we get $y=7$.
\therefore The equation of tangent at $(2,7)$ parallel to $2 x+y-9=0$ is $(y-7)=2(x-2) \Rightarrow y-7=2 x-4 \Rightarrow 2 x-y+3=0$
(b) S1ope of tangent to curve (i) is $2 x-2$ Slope of line $5 y-15 x=13$ is 3

Since the required tangent is perpendicular to the line $5 y-15 x=13 \therefore$ Product of their slopes is $-1 \Rightarrow(2 x-2)(3)=-1 \Rightarrow$
$6 x-6=-1 \Rightarrow 6 x=5 \Rightarrow x=\frac{5}{6}$
Putting $x=\frac{5}{6}$ in (i), we get $y=\frac{217}{36}$
Also, slope of the required tangent $=\frac{-1}{3}$

Application of Derivatives

\therefore The equation of tangent at $\left(\frac{5}{6}, \frac{217}{36}\right)$ perpendicular to $5 y-15 x=13$ is $\left(y-\frac{217}{36}\right)=-\frac{1}{3}\left(x-\frac{5}{6}\right) \Rightarrow 12 x+36 y-227=0$
16. Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and $x=-2$ are parallel.

SOLUTION

We have, $y=7 x^{3}+11$ (i)
Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=7 \cdot\left(3 x^{2}\right)+0=21 x^{2}$
\therefore Slope of tangent at $x=2$ is $\left(\frac{d y}{d x}\right)_{x=2}=21(2)^{2}=84$ and slope of tangent at $x=-2$ is $\left(\frac{d y}{d x}\right)_{x=-2}=21(-2)^{2}=84$
Hence, the slopes of tangents at $x=2$ and $x=-2$ are equal. Therefore, these tangents are parallel.
17. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the point.

SOLUTION

We have, $y=x^{3}$ (i)
Differentiating (i), w.r.t. x, we get $\frac{d y}{d x}=3 x^{2}$ Since, it is given that slope is equal to the y-coordinate of the point
$\therefore \frac{d y}{d x}=y \Rightarrow 3 x^{2}=y(\operatorname{using}(\mathrm{ii})) \Rightarrow 3 x^{2}=x^{3} \Rightarrow x^{2}(3-x)=0 \Rightarrow x=0$ or $x=3$ (using (i))
When $x=0$, then from (i) $y=0$ When $x=3$, then from (i), $y=3^{3}=27 \therefore$ The required points are $(0,0)$ and (3,27).
18. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

SOLUTION

Let $\left(x_{1}, y_{1}\right)$ be the required point on the given curve $y=4 x^{3}-2 x^{5}$ (i) $\therefore y_{1}=4 x_{1}{ }^{3}-2 x_{1}{ }^{5}$
Differentiating (i) w. r. t. x, we get $\frac{d y}{d x}=12 x^{2}-10 x^{4}$
So, $\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=12 x_{1}{ }^{2}-10 x_{1}^{4} \therefore$ The equation of the tangent at $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=\left(12 x_{1}^{2}-10 x_{1}^{4}\right)\left(x-x_{1}\right)$
Since, it passes through the origin,
$\therefore 0-y_{1}=\left(12 x_{1}^{2}-10 x_{1}^{4}\right)\left(0-x_{1}\right)$ or $y_{1}=12 x_{1}^{3}-10 x_{1}^{5}$ (iii)
From (ii) and (iii), $4 x_{1}{ }^{3}-2 x_{1}^{5}=12 x_{1}^{3}-10 x_{1}^{5} \Rightarrow-8 x_{1}^{3}+8 x_{1}^{5}=0 \Rightarrow 8 x_{1}^{3}\left(-1+x_{1}^{2}\right)=0 \Rightarrow x_{1}=0, x_{1}= \pm 1$
When $x_{1}=0$, then from(ii), $y_{1}=0$ When $x_{1}=1$, then from(ii), $y_{1}=4(1)-2(1)=2$
When $x_{1}=-1$, then from(ii), $y_{1}=4(-1)^{3}-2(-1)^{5}=-4+2=-2$
Hence, the required points are $(0,0),(1,2) \operatorname{and}(-1,-2)$
19. . Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the $x-$ axis.

SOLUTION

$x^{2}+y^{2}-2 x-3=0(i)$
Differentiating (i) w. r.t. x, we get $2 x+2 y \frac{d y}{d x}-2-0=0 \Rightarrow \frac{d y}{d x}=\frac{2(1-x)}{2 y}=\frac{1-x}{y}$ (ii)
For tangents parallel to x -axis, we must have $\frac{d y}{d x}=0 \Rightarrow \frac{1-x}{y}=0 \Rightarrow x=1, y \neq 0$
Substituting $x=1$ in (i), we get $1^{2}+y^{2}-2 \cdot 1-3=0 \Rightarrow y^{2}-4=0 \Rightarrow y= \pm 2$
Hence, the required points are $(1,2)$ and $(1,-2)$.
20. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.

SOLUTION

We have, $a y^{2}=x^{3}$ (i)

Differentiating (i) w. r.t. x, we get $a(2 y) \frac{d y}{d x}=3 x^{2} \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{2 a y} \therefore$ Slope of tangent at $\left(a m^{2}, a m^{3}\right)$
$=\left(\frac{d y}{d x}\right)_{\left(a m^{2}, a m^{3}\right)}=\frac{3\left(a m^{2}\right)^{2}}{2 a\left(a m^{3}\right)}=\frac{3}{2} m \Rightarrow$ Slope of normal at the given point $=-\frac{1}{\frac{3}{2} m}=-\frac{2}{3 m}$
Hence the equation of normal at the given point is $\left(y-a m^{3}\right)=-\frac{2}{3 m}\left(x-a m^{2}\right)$ or $3 m y-3 a m^{4}=-2 x+2 a m^{2}$ or $2 x+3 m y-$ $3 a m^{4}-2 \mathrm{am}^{2}=0$
21. Find the equation of the normals to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.

SOLUTION

We have $y=x^{3}+2 x+6$ (i)
The given line is $14 y+x+4=0$ (ii)
The slope of line (ii) is $-\frac{1}{14}$.
Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=3 x^{2}+2$
Let $P\left(x_{1}, y_{1}\right)$ be a point on (i). \therefore The slope of tangent at $P\left(x_{1}, y_{1}\right)$ to (i) is
$\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=3 x_{1}^{2}+2$
\Rightarrow The slope of normal at $P\left(x_{1}, y_{1}\right)$ to (i) is $-\frac{1}{3 x_{1}^{2}+2}$
Since normal at $P\left(x_{1}, y_{1}\right)$ to (i) is parallel to the line (ii), we get $-\frac{1}{3 x_{1}^{2}+2}=-\frac{1}{14} \Rightarrow 3 x_{1}^{2}+2=14 \Rightarrow 3 x_{1}^{2}=12 \Rightarrow x_{1}^{2}=4 \Rightarrow x_{1}=$ ± 2
As $P\left(x_{1}, y_{1}\right)$ lies on the curve (i), we get $y_{1}=x_{1}^{3}+2 x_{1}+6$ and so when $x_{1}=2, y_{1}=2^{3}+2 \cdot 2+6=18$ and when $x_{1}=-2, y_{1}=$ $(-2)^{3}+2 \cdot(-2)+6=-6$
Thus, there are two points $(2,18)$ and $(-2,-6)$ on (i) at which the normals are parallel to (ii).
Therefore, the equations of the required normals are $y-18=-\frac{1}{14}(x-2)$ and
$y+6=-\frac{1}{14}(x+2)$ or, $14 y-252=-x+2$ and $14 y+84=-x-2$ or, $x+14 y-254=0$ and $x+14 y+86=0$
22. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$

SOLUTION

We have, $y^{2}=4 a x$ (i)
Differentiating (i) w.r.t. x, we get $2 y \frac{d y}{d x}=4 a \Rightarrow \frac{d y}{d x}=\frac{2 a}{y} \therefore$ Slope of the tangent at
$\left(a t^{2}, 2 a t\right)$ is $\left(\frac{d y}{d x}\right)_{\left(a t^{2}, 2 a t\right)}=\frac{2 a}{2 a t}=\frac{1}{t}$
Hence, the equation of the tangent to (i) at $\left(a t^{2}, 2 a t\right)$ is $y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$ or $x-t y+a t^{2}=0$
Slope of normal at $\left(a t^{2}, 2 a t\right)$ is $\frac{-1}{\text { Slope of tangent }}=-t$
\therefore The equation of the normal to (i) at $\left(a t^{2}, 2 a t\right)$ is $y-2 a t=-t\left(x-a t^{2}\right)$ or $t x+y-2 a t-a t^{3}=0$
23. Prove that the curves $x=y^{2}$ and $x y=k$ cut at right angles, if $8 k^{2}=1$.

SOLUTION

We have, $x=y^{2}$ (i) and $x y=k$ (ii)

Solving (i) \& (ii), we get $y^{3}=k \Rightarrow y=k^{1 / 3}$ Substituting this value of y in (i), we get $x=\left(k^{1 / 3}\right)^{2}=k^{2 / 3} \therefore$ (i) and (ii) intersect at the point $\left(k^{2 / 3}, k^{1 / 3}\right)$.
Differentiating (i) w.r.t. x, we get $1=2 y \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
Slope of tangent to (i) at $\left(k^{2 / 3}, k^{1 / 3}\right)=\frac{1}{2 k^{1 / 3}}$ (iii) From (ii), $y=\frac{k}{x}$
Differentiating (ii) wr.t. x, we get $\frac{d y}{d x}=-\frac{k}{x^{2}} \therefore$ Slope of tangent to (ii) at $\left(k^{2 / 3}, k^{1 / 3}\right)=-\frac{k}{\left(k^{2 / 3}\right)^{2}}=-\frac{1}{k^{1 / 3}}$ (iv)
The two curves cut at right angles (i.e., orthogonally) at $\left(k^{2 / 3}, k^{1 / 3}\right)$, if product of slopes of their tangents $=-1$
$\Rightarrow\left(\frac{1}{2 k^{1 / 3}}\right)\left(-\frac{1}{k^{1 / 3}}\right)=-1 \Rightarrow 1=2 k^{2 / 3} \Rightarrow 1=8 k^{2}$.
24. Find the equations of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$.

SOLUTION

We have, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ (i)
Differentiating (i) w.r.t. x, we get $\frac{2 x}{a^{2}}-\frac{2 y \frac{d y}{d x}}{b^{2}}=0 \Rightarrow \frac{d y}{d x}=\frac{b^{2 x}}{a^{2} y}$ (ii) \therefore Slope of tangent, to (i) at $\left(x_{0}, y_{0}\right)$ is $\left(\frac{d y}{d x}\right)_{\left(x_{0}, y_{0}\right)}=\frac{b x_{0}}{a^{2} y_{0}}$
Hence, the equation of the tangent to (i) at $\left(x_{0}, y_{0}\right)$ is $y-y_{0}=\frac{b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right) \Rightarrow a^{2} y_{0}\left(y-y_{0}\right)=b^{2} x_{0}\left(x-x_{0}\right)$
$\Rightarrow b^{2} x x_{0}-a^{2} y y_{0}=b^{2} x_{0}^{2}-a^{2} y_{0}^{2} \Rightarrow \frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}}$
[Dividing by $a^{2} b^{2}$] As $\left(x_{0}, y_{0}\right)$ lies on (i), $\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}}=1$
Hence the equation of the tangent is $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$.
Slope of the normal at $\left(x_{0}, y_{0}\right)=\frac{-1}{\text { Slope of tangent }}=-\frac{a^{2} y_{0}}{b^{2} x_{0}}$
\therefore The equation of the normal at $\left(x_{0}, y_{0}\right) y-y_{0}=-\frac{a^{2} y_{0}}{b^{2} x_{0}}\left(x-x_{0}\right) \Rightarrow \frac{y-y_{0}}{a^{2} y_{0}}=-\frac{\left(x-x_{0}\right)}{b^{2} x_{0}}$
$\Rightarrow \frac{y-y_{0}}{a^{2} y_{0}}+\frac{x-x_{0}}{b^{2} x_{0}}=0$.
25. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x-2 y+5=0$.

SOLUTION

We have, $y=\sqrt{3 x-2}$ (i) and $4 x-2 y+5=0$ (ii) Slope of the line (ii) is 2
From (i), $\frac{d y}{d x}=\frac{3}{2 \sqrt{3 x-2}}$
Let $\left(x_{1}, y_{1}\right)$ be the point on (i) at which tangent is parallel to (ii), then $\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=$ Slope of line (ii)
$\Rightarrow \frac{3}{2 \sqrt{3 x_{1}-2}}=2 \Rightarrow 3=4 \sqrt{3 x_{1}-2}$
$\Rightarrow 3 x_{1}-2=\left(\frac{3}{4}\right)^{2} \Rightarrow x_{1}=\frac{41}{48}$
Also, $\left(x_{1}, y_{1}\right)$ lies in (i), therefore, $y_{1}=\sqrt{3 x_{1}-2}=\sqrt{3 x \frac{41}{48}-2}=\sqrt{\frac{123-96}{48}}=\sqrt{\frac{27}{48}}=\sqrt{\frac{9}{16}}=\frac{3}{4}$
\therefore The point on (i) at which tangent is parallel to (ii) is $\left(\frac{41}{48}, \frac{3}{4}\right)$.
\therefore Required equation of tangent is $y-\frac{3}{4}=2\left(x-\frac{41}{48}\right)$ or $48 x-24 y-23=0$

Choose the correct answer in Exercises 26 and 27.

26. The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is
(A) 3
(B) $\frac{1}{3}$
(C) -3
(D) $-\frac{1}{3}$

SOLUTION

(D) : We have, $y=2 x^{2}+3 \sin x$ (i) $=\frac{d y}{d x}=4 x+3 \cos x$

Slope of the tangent to (i) at $x=0$ is $\left(\frac{d y}{d x}\right)_{x=0}=4 \cdot 0+3 \cos 0=3$
So, slope of the normal to (i) at $x=0$ is $\frac{-1}{\text { Slope of the tangent }}=-\frac{1}{3}$
27. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point
(A) $(1,2)$
(B) $(2,1)$
(C) $(1,-2)$
(D) $(-1,2)$

SOLUTION

(A): We have, $y^{2}-4 x=0$ (i)

Slope of the line $y=x+1$ is 1 . From (i), $2 y \frac{d y}{d x}=4 \Rightarrow \frac{d y}{d x}=\frac{4}{2 y}=\frac{2}{y}$
\Rightarrow Slope of tangent to (i) is $\frac{2}{y}$
$\therefore \& \frac{2}{y}=1 \Rightarrow y=2$
When $y=2$, then from (i) $2^{2}=4 x \Rightarrow x=1 \therefore$ The required point on the curve (i) is $(1,2)$.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE \& SAT

www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
3. C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
4. I.C.S.E. \& I.S.C.
\star Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

