NCERT - Miscellaneous Exercise

mathstudy 1. Let f: R-R be defined as f(x) = 10x + 7. Find the function g : $R \rightarrow R$ such that gof = fog = IR.

SOLUTION

f: X \rightarrow Y, where X, $Y \subseteq R$. Let $y \in$ Y , arbitrarily.

By definition,
$$y = 10x + 7$$
 for $x \in X$

$$\Rightarrow x = \frac{y - x}{10}$$

We define, g : Y \rightarrow X by g(y) = $\frac{y-7}{10}$ Now, $(gof)(x) = g(f(x)) = \frac{f(x) - 7}{10} = \frac{(10x + 7) - 7}{10} = x$ and (fog) (y) = f (g(y)) = 10g (y) + 7 = 10 $\left(\frac{y-7}{10}\right)$ + 7 = y Thus, gof = fog = IR.

Hence, f is invertible and g : Y \rightarrow X such that g(y) = $\frac{y-7}{10}$

2. Let f: W \rightarrow W be defined as f(n) = n-1, if n is odd and f (n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

SOLUTION

 $f:W{\rightarrow}\,W$

$$f(n) = \begin{cases} n-1, & if \text{ nisodd} \\ n+1, & if \text{ niseven} \end{cases}$$

Injectivity

Let n, m be any two odd real whole numbers.

 $\therefore f(n) = f(m) \Rightarrow n - 1 = m - 1 \Rightarrow n = m$

Again, let n, m be any two even whole numbers.

 $\therefore f(n) = f(m) \Rightarrow n+1 = m+1 \Rightarrow n = m$ If n is even and m is odd, then $n \neq m$.

Also, if f(n) is odd and f(m) is even, then $f(n) \neq f(m)$

Thus, if $n \neq m \Rightarrow f(n) \neq f(m)$. f is an injective.

Surjectivity :

Let n be an arbitrary whole number.

If n is an odd number, then there exists an even whole number

(n + 1) such that f(n + 1) = n + 1 - 1 = n

If n is an even number, then there exists an odd whole number,

such that f(n-1)=(n-1) + 1 = n

Thus, every $n \in W$ has its pre-image in W.

So, f: $W \rightarrow W$ is a surjective.

Thus, f is invertible and f^{-1} exists.

Now, f(n-1) = n, if n is odd and f(n + 1) = n, if n is even.

 \Rightarrow n-1 = $f^{-1}(n)$, if n is odd and n + 1 = $f^{-1}(n)$, if n is even.

Hence,
$$f^{-1}(n) = \begin{cases} n-1, & if \text{ nisodd} \\ n+1, & if \text{ niseven} \end{cases}$$
. Hence, $f^{-1} = f$

3. If $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 - 3x + 2$, find f(f(x)).

SOLUTION

We are given that, $f(x) = x^2 - 3x + 2$ ∴ $f[f(x)] = f(x^2 - 3x + 2) / [/] = / (x^2 - 3 + 2)$ $\Rightarrow f[f(x)] = (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$ $= x^{4} + 9x^{2} + 4 - 6x^{3} - 12x + 4x^{2} - 3x^{2} + 9x - 6 + 2$ $=x^{4}-6x^{3}+10x^{2}-3x$. Hence, $f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x$.

, udd 4. Show that the function $f: R \to \{x \in R : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}, x \in R$ is one-one and onto function.

W.Mat

SOLUTION

We have : f (x) =
$$\frac{x}{1+|x|} = \begin{cases} \frac{x}{1+x}, & if \quad x \ge 0\\ \frac{x}{1-x}, & if \quad x < 0 \end{cases}$$

Here, Domain of f = R

To prove : f is one-one Let x, $y \in Domain of f=R$, such that $x \neq y$ Here, four cases arise.

Case I : When $x \ge 0, y \ge 0$

If $x \neq y \Rightarrow 1 + x \neq 1 + y \Rightarrow \frac{1}{1+x} \neq \frac{1}{1+y} \Rightarrow \frac{1}{1+x} \neq \frac{-1}{1+y}$ $\Rightarrow 1 - \frac{1}{1+x} \neq 1 - \frac{1}{1+y} \Rightarrow \frac{x}{1+x} \neq \frac{y}{1+y}$ $\Rightarrow f(x) \neq f(y).$

Case II : When $x \ge 0$ and y < 0 Then, $f(x) = \frac{x}{1+x} \ge 0$ and $f(y) = \frac{y}{1-y} < 0$

$$\Rightarrow f(x) \neq f(y).$$

Case III : When x < 0 and $y \ge 0$ Then, f(x) < 0 and $f(y) \ge 0$ [As in Case II] $\Rightarrow f(x) \neq f(y)$

Case IV : When $x \leq 0$ and y

If
$$x \neq y \Rightarrow -x \neq -y \Rightarrow 1 + x \neq 1 - y \Rightarrow \frac{1}{1 - x} \neq \frac{1}{1 - y}$$

$$\Rightarrow \frac{1}{1 - x} - 1 \neq \frac{1}{1 - y} - 1 \Rightarrow \frac{x}{1 - x} \neq \frac{y}{1 - y} \Rightarrow f(x) \neq f(y).$$
Thus, in each area $y \neq y \neq f(y) \neq f(y)$

Thus, in each case, $x \neq y \Rightarrow f(x) \neq f(y)$.

Hence, f is one-one.

To prove : f is onto

Let $y \in R$, where y is arbitrary.

Then,
$$y = f(x) = \frac{x}{1+|x|} = \begin{cases} \frac{x}{1+x} < 1, & \text{if } x \ge 0\\ \frac{x}{1-x} > -1, & \text{if } x \le 0 \end{cases}$$

Case I When
$$y = \frac{x}{1+x}$$
, where $y \ge 0$
 $y + xy = x$ or $y = x (1-y)$ or $x = \frac{y}{1-y} \ge 0$

Athstudyit

Case II When
$$y = \frac{x}{1+x}$$
, where $y < 0$

$$y - xy = x$$
 or $y = x + xy$ or $x = \frac{y}{1 + y} < 0$

Thus, when $y \ge 0$, there is $\frac{y}{1-y} \in$ Domain of f = R such that

$$f\left(\frac{y}{1-y}\right) = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{y}{1-y+y} = \frac{y}{1} = y$$

and when y < 0, there is $\frac{y}{1+y} \in \text{Domain of } f=R$ such that $f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1-\frac{y}{1+y}} = \frac{y}{1+y-y}$

$$=\frac{y}{1}=y$$

Hence, f is onto.

5. Show that the function $f : R \to R$ given by f(x) = x3 is injective.

SOLUTION

Let $x_1, x_2 \in R$ be such that,

$$f(x_1) = f(x_2) \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2$$

- \therefore f is one-one. Hence, $f(x) = x^3$ is injective.
- 6. Give example of two functions $f: N \to Z$ and $g: Z \to Z$ such that gof is injective but g is not injective.

(Hint : Consider f(x) = x and g(x) = |x|)

SOLUTION

 $f:N\to N$ and $g:Z\to Z$

Let f(x) = x and g(x) = |x|. Since, $g(x) = g(-x) = |x| \forall x \in Z$

 \therefore g is not one-one \Rightarrow g is not injective.

Since, $f : N \to Z$ and $g : Z \to Z \Rightarrow gof : N \to Z$. Let $x_1, x_2 \in N$.

Now, (gof)
$$(x_1) = (gof)(x_2) \Rightarrow g(x_1) = g(x_2)|x_1| = |x_2|$$

$$\Rightarrow x_1 = x_2 [0]$$

- \therefore gof is one-one. Hence, gof is injective.
- 7. Give example of two functions $f: N \to N$ and $g: N \to N$ such that gof is onto but f is not onto.

(Hint : Consider $f(\mathbf{x}) = \mathbf{x} + 1$ and $g(\mathbf{x}) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$

SOLUTION

Consider,
$$f(x)=x+1$$
 and $g(x)=\begin{cases} x-1, & if \quad x>1\\ 1, & if \quad x=1 \end{cases}$

$$f(x) = x + 1 \ge 1 + 1 \forall x \in N \Rightarrow f(x) \ge 2 \forall x \in N.$$

Clearly, range of $f \neq N$ [1 \notin Range of f]

∴ f is not onto.

Now, (gof) : N \rightarrow N such that (gof) (x)=g(f(x))=g(x + 1) = (x + 1)-1 [x + 1 > 1 for all $x \in N$] = $x \forall x \in N$

 \therefore Range of (gof) = N [gof is identity function] Hence, gof is onto.

8. Given a non empty set X, consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows : For subsets A, B in P(X), ARB if and only if A⊂B. Is R an equivalence relations on P(X) ? Justify your answer.
SOLUTION

(i) Since $A \subset A \forall A \in P(X) \Rightarrow ARA$

 \therefore R is reflexive.

(ii) Let ARB \Rightarrow A \subset B and BRA \Rightarrow B \subset A

 \Rightarrow A = B (which is not so) [\Rightarrow ARB \Rightarrow BRA \Rightarrow R is not symmetric

(iii) ARB,BRC \Rightarrow A \subset B, B \subset C \Rightarrow f \subset C \Rightarrow ARC \Rightarrow R is transitive

Thus R is not an equivalence relation of P(X).

9. Given a non-empty set X, consider the binary operation $*: P(X) \times P(X) \rightarrow P(X)$ given by $A*B = A \cap B \forall A, B$ in P(X), where P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

SOLUTION

(i) Let $E \in P(X)$ be the identity element.

Then, $A * E = E * A = A \ \forall A \in P(X)$

 $\Rightarrow A \cap E = E \cap A = A \ \forall A \in P(X)$

 $\Rightarrow X \cap E = X \text{ because } X \in P(X) \Rightarrow X \subset E.$

Also, Thus, E = X. Hence, X is the identity element.

(ii) Let $A \in P(X)$ be invertible. Then, there exists $B \in P(X \text{ such that } A * B = B * A = X$, where X is the identity element.

 $\Rightarrow A \cap B = B \cap A = X \Rightarrow X \subset A, X \subset B \text{ Also, } A, B$

$$\therefore A = X = B.$$

Hence, X is the only invertible element and $A^{-1} = B = X$.

10. Find the number of all onto functions from the set $\{1, 2, 3, ..., n\}$ to itself.

SOLUTION

The number of onto functions that can be defined from a finite set X containing n elements on to a finite set Y containing n elements.

Let X : $\{1, 2, ..., n\}$ and Y : $\{1, 2, 3, ..., n\}$

One of the elements of set X(say 1) has any one of the pre-image 1, 2, ..., n i.e. n ways.

In similar way, the element (say 2) in (n-1) ways

 \therefore Total number of possible ways=n (n-1) (n -2)3.2.1

= n!

11. 11. Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists.

(i) $\mathbf{F} = \{(a,3), (b,2), (c,1)\}$

(ii) $F = \{(a, 2), (b, 1), (c, 1)\}$

SOLUTION

Given, $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. (i) $F = \{(a, 3), (6, 2), (c, 1)\}$ i.e. F(a) = 3, F(b) = 2, F(c) = 1 $\Rightarrow F^{-1}(3) = a$, $F^{-1}(2) = b$, $F^{-1}(1) = c$ $\therefore F^{-1} = \{(3, a), (2, b), (1, c)\}$. (ii) $F = \{(a, 2), (b, 1)(c, 1)\}$

F is not one-one function, since element b and c have the same image 1, so F^{-1} does not exist.

12. Consider the binary operations $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $o: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as a * b = |a - b| and $aob = a, \forall a, b \in \mathbb{R}$. Show that * is commutative but not associative and o is associative but not commutative. Further, show that $\forall a, b, c \in \mathbb{R}$, a * (boc) = (a * b) o (a * c). (If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.

SOLUTION

For commutativity :

a * b = |a - b| and b * a = |b - a| = |a - b|

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

 $\therefore a * b = b * a$

Thus, the operation * is commutative.

For associativity

Consider, a * (b * c) = a *|b - c| = |a - |b - c|| Also (a * b) *c = |a - b| * c = ||a - b| - c| ∴ a * (b * c) \neq (a * b) * c

Thus, the operation * is not associative.

For commutativity

 $aob = a \ \forall a, b \in R.$ Now, $boa = b \Rightarrow aob \neq boa$

Thus, operation o is not commutative.

For associativity

ao (boc) = aob = a and (aob) oc = aoc = a ao (boc) = (aob) oc. Thus, operation o is associative. To prove : a * (boc) = (a * b) o (a * c)L.H.S. = a * (boc) = a * b = |a - b|R.H.S. = (a * b)o(a * c) = |a - b|o|a - c| = |a - b|Thus, a * (boc) = (a * b) o (a * c). Hence proved.

Another distributive law

ao(b * c) = (aob) * (aoc) L.H.S. = ao(b * c) = ao(|b - c|) = aR.H.S. = (aob) * (aoc) = a * a = |a - a| = 0.

As, L.H.S.* R.H.S. Hence, the operation o does not distribute over *.

13. Given a non-empty set X, let* : $P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B = (A-B) \cup (B - A), \forall A, B \in P(X)$. Show that the empty set ϕ is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$.

omt

www.mathsudwit

(Hint : $(A - \phi) \cup (\phi - A) = A$ and $(A - A) \cup (A - A) = A * A = \phi$).

SOLUTION

To show : ϕ is the identity For every $A \in P(X)$, we have $\phi * A = (\phi - A) \cup (A - \phi) = \phi \cup A = A$ and $A * \phi = (A - \phi) \cup (\phi - A) = A \cup \phi = A$ $\Rightarrow \phi$ is the identity element for the operation * on P(X). Also, $A*A = (A-A) \cup (A+A) = \phi \cup \phi = \phi$ \Rightarrow Every element A of P(X) is invertible with $A^{-1} = A$

14. Define a binary operation * on the set 0, 1, 2, 3, 4, 5 as $a * b = \begin{cases} a+b, & \text{if } a+b < 6\\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$

Show that zero is the identity forth is operation and each element $a \neq 0$ of the set is invertible with 6 - a being the inverse of a. **SOLUTION**

For identity

If e be the identity element, then a * e = e * a = a

Now, a * 0 = a + 0 = a and 0 * a = 0 + a = a

Thus, a * 0 = 0 * a = a. Hence, 0 is the identity element of the operation.

For inverse

If b be the inverse of a. then a * b = b * a = e.

Now a * (6 - a) = a + (6 - a) - 6 = 0

and (6 - a) * a = (6 - a) + a - 6 = 0.

Hence, each element a of the set is invertible with inverse 6-a.

15. Let A= { -1,0,1,2}, B= { -4, -2,0,2} and f, g: A \rightarrow B be function defined by $f(x) = x^2 - x, x \in A$ and $g(x) = 2 \left| x - \frac{1}{2} \right| - 1, x \in A$.

Are f and g equal ? Justify your answer.

windthstudyit (Hint : One may note that two functions f : A \rightarrow B and g : A \rightarrow B such that f(a)=g(a) $\forall a \in A$, are called equal functions). SOLUTION

When x = -1, f(-1) = 12 + 1 = 2and $g(-1) = 2\left|-1 - \frac{1}{2}\right| - 1 = 2$ When x = 0, f(0) = 0 and g(0) = $2 \left| -\frac{1}{2} \right| - 1 = 2 \times \frac{1}{2} - 1 = 0$ When x =1, $f(1)=1^2-1=0$ and $g(1) = 2 \left| 1 - \frac{1}{2} \right| - 1 = 2 \times \frac{1}{2} - 1 = 0$ When x = 2, f(2)=22-2=2 and g(2) = $2\left|2-\frac{1}{2}\right| - 1 = 3 - 1 = 2$

Thus, for each $a \in A$, f(a) = g(a). Hence, f and g are equal functions.

- 16. Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3), which are reflexive and symmetric but not transitive is
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

SOLUTION

(A) There is only one relation containing (1, 2) and (1, 3) which is reflexive and symmetric but not transitive.

- 17. Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

SOLUTION

- (B) : There are two equivalence relations containing (1, 2).
- 18. Let $f: R \to R$ be the Signum Function defined as $f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$ and $g: R \to R$ be the Greatest Integer

Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?

SOLUTION

For $x \in (0, 1]$ (fog) (x) = f(g(x)) = f([x]) $= \begin{cases} f(0), & if \quad 0 < x < 1 \\ f(1), & if \quad x = 1 \end{cases} = \begin{cases} 0, & if \quad 0 < x < 1 \\ 1, & if \quad x = 1 \end{cases} \dots (1)$ And (gof)(x) = g(f(x)) = g(1) = [1] = 1 $\Rightarrow (gof)(x) = 1 \forall x \in (0, 1] \dots (2)$ From (1) and (2), (fog) and (gof) do not coincide in (0, 1].

- 19. Number of binary operations on the set $\{a, b\}$ are
 - (A) 10
 - (B) 16
 - (C) 20
 - (D) 8

SOLUTION

(B) There are two elements in the set $\{a, b\}$. \therefore Number of binary operations = 24 = 16.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE & SAT

ownload Math Frankwink www.mathstudy.in

K

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)

★ Chapter Tests (Full Syllabus- Fully Solved)

★ Twenty Mock Tests (Full Length - Fully Solved)

- 2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
- 3. C.BS.E.

★ Work-Book Class XII (Fully Solved)

★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Past Fifteen Years Topicwise Questions (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

4. I.C.S.E. & I.S.C.

★Work-Book Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)

6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

USE E-BOOKS & SAVE ENVIRONMENT WWW.MATHSTUDY.IN