1. Let $f: R-R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g o f=f o g=I R$.

SOLUTION

$\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, where $\mathrm{X}, Y \subseteq R$. Let $\mathrm{y} \in \mathrm{Y}$, arbitrarily.
By definition, $\mathrm{y}=10 \mathrm{x}+7$ for $\mathrm{x} \in \mathrm{X}$
$\Rightarrow x=\frac{y-7}{10}$
We define, $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ by $\mathrm{g}(\mathrm{y})=\frac{y-7}{10}$
Now, $($ gof $)(\mathrm{x})=g(f(x))=\frac{f(x)-7}{10}=\frac{(10 x+7)-7}{10}=x$
and $(f \circ g)(y)=f(g(y))=10 g(y)+7=10\left(\frac{y-7}{10}\right)+7=y$
Thus, $g o f=f o g=I R$.
Hence, f is invertible and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that $\mathrm{g}(\mathrm{y})=\frac{y-7}{10}$
2. Let $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$ be defined as $\mathrm{f}(\mathrm{n})=\mathrm{n}-1$, if n is odd and $\mathrm{f}(\mathrm{n})=\mathrm{n}+1$, if n is even. Show that f is invertible. Find the inverse of f . Here, W is the set of all whole numbers.

SOLUTION

$\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$
$f(n)=\left\{\begin{array}{lll}n-1, & \text { if nisodd } \\ n+1, & \text { if niseven }\end{array}\right.$
Injectivity
Let n, m be any two odd real whole numbers.
$\therefore f(n)=f(m) \Rightarrow n-1=m-1 \Rightarrow n=m$
Again, let n, m be any two even whole numbers.
$\therefore f(n)=f(m) \Rightarrow n+1=m+1 \Rightarrow n=m$ If n is even and m is odd, then $\mathrm{n} \neq \mathrm{m}$.
Also, if $\mathrm{f}(\mathrm{n})$ is odd and $\mathrm{f}(\mathrm{m})$ is even, then $\mathrm{f}(\mathrm{n}) \neq \mathrm{f}(\mathrm{m})$
Thus, if $n \neq m \Rightarrow f(n) \neq f(m) \therefore \mathrm{f}$ is an injective.
Surjectivity:
Let n be an arbitrary whole number.
If n is an odd number, then there exists an even whole number
$(\mathrm{n}+1)$ such that $\mathrm{f}(\mathrm{n}+1)=\mathrm{n}+1-1=\mathrm{n}$
If n is an even number, then there exists an odd whole number,
such that $\mathrm{f}(\mathrm{n}-1)=(\mathrm{n}-1)+1=\mathrm{n}$
Thus, every $n \in W$ has its pre-image in W .
So, $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$ is a surjective.
Thus, f is invertible and f^{-1} exists.
Now, $\mathrm{f}(\mathrm{n}-1)=\mathrm{n}$, if n is odd and $\mathrm{f}(\mathrm{n}+1)=\mathrm{n}$, if n is even.
$\Rightarrow \mathrm{n}-1=f^{-1}(\mathrm{n})$, if n is odd and $\mathrm{n}+1=f^{-1}(n)$, if n is even.
Hence, $f^{-1}(n)=\left\{\begin{array}{ll}n-1, & \text { if nisodd } \\ n+1, & \text { if niseven }\end{array}\right.$. Hence, $f^{-1}=f$

Relations \& Functions

3. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(\mathrm{x})=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.

SOLUTION

We are given that, $\mathrm{f}(\mathrm{x})=x^{2}-3 \mathrm{x}+2$
$\therefore f[f(x)]=f\left(x^{2}-3 x+2\right) /[/<]=/\left(x^{2}-3 *+2\right)$
$\Rightarrow f[f(x)]=\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2$
$=x^{4}+9 x^{2}+4-6 x^{3}-12 x+4 x^{2}-3 x^{2}+9 x-6+2$
$=x^{4}-6 x^{3}+10 x^{2}-3 x$.
Hence, $\mathrm{f}(\mathrm{f}(\mathrm{x}))=x^{4}-6 x^{3}+10 x^{2}-3 x$.
4. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x}{1+|x|}, x \in R$ is one-one and onto function.

SOLUTION

We have : $\mathrm{f}(\mathrm{x})=\frac{x}{1+|x|}=\left\{\begin{array}{ccc}\frac{x}{1+x}, & \text { if } & x \geq 0 \\ \frac{x}{1-x}, & \text { if } & x<0\end{array}\right.$
Here, Domain of $f=R$
To prove : f is one - one Let $\mathrm{x}, \mathrm{y} \in$ Domain of $\mathrm{f}=\mathrm{R}$, such that $\mathrm{x} \neq \mathrm{y}$ Here, four cases arise.
Case I: When $x \geq 0, y \geq 0$
If $x \neq y \Rightarrow 1+x \neq 1+y \Rightarrow \frac{1}{1+x} \neq \frac{1}{1+y} \Rightarrow \frac{1}{1+x} \neq \frac{-1}{1+y}$
$\Rightarrow 1-\frac{1}{1+x} \neq 1-\frac{1}{1+y} \Rightarrow \frac{x}{1+x} \neq \frac{y}{1+y}$
$\Rightarrow f(x) \neq f(y)$.
Case II : When $\mathrm{x} \geq 0$ and $\mathrm{y}<0$ Then, $\mathrm{f}(\mathrm{x})=\frac{x}{1+x} \geq 0$ and $f(y)=\frac{y}{1-y}<0$
$\Rightarrow f(x) \neq f(y)$.
Case III : When $x<0$ and $\mathrm{y} \geq 0$
Then, $f(x)<0$ and $\mathrm{f}(\mathrm{y}) \geq 0$ [As in Case II]
$\Rightarrow f(x) \neq f(y)$
Case IV : When $\mathrm{x} \leq 0$ and $\mathrm{y} \leq 0$
If $x \neq y \Rightarrow-x \neq-y \Rightarrow 1-x \neq 1-y \Rightarrow \frac{1}{1-x} \neq \frac{1}{1-y}$
$\Rightarrow \frac{1}{1-x}-1 \neq \frac{1}{1-y}-1 \Rightarrow \frac{x}{1-x} \neq \frac{y}{1-y} \Rightarrow f(x) \neq f(y)$.
Thus, in each case, $x \neq y \Rightarrow f(x) \neq f(y)$.
Hence, f is one-one.
To prove : f is onto
Let $y \in R$, where y is arbitrary.
Then, $y=f(x)=\frac{x}{1+|x|}=\left\{\begin{array}{lll}\frac{x}{1+x}<1, & \text { if } & x \geq 0 \\ \frac{x}{1-x}>-1, & \text { if } & x \leq 0\end{array}\right.$
Case I When $\mathrm{y}=\frac{x}{1+x}$, where $\mathrm{y} \geq 0$
$\mathrm{y}+\mathrm{xy}=\mathrm{x}$ or $\mathrm{y}=\mathrm{x}(1-\mathrm{y})$ or $\mathrm{x}=\frac{y}{1-y} \geq 0$

Relations \& Functions

Case II When $\mathrm{y}=\frac{x}{1+x}$, where $y<0$
$\mathrm{y}-\mathrm{xy}=\mathrm{x}$ or $\mathrm{y}=\mathrm{x}+\mathrm{xy}$ or $\mathrm{x}=\frac{y}{1+y}<0$
Thus, when $\mathrm{y} \geq 0$, there is $\frac{y}{1-y} \in$ Domain of $\mathrm{f}=\mathrm{R}$ such that
$f\left(\frac{y}{1-y}\right)=\frac{\frac{y}{1-y}}{1+\frac{y}{1-y}}=\frac{y}{1-y+y}=\frac{y}{1}=y$
and when $y<0$, there is $\frac{y}{1+y} \in$ Domain of $\mathrm{f}=\mathrm{R}$ such that $f\left(\frac{y}{1+y}\right)=\frac{\frac{y}{1+y}}{1-\frac{y}{1+y}}=\frac{y}{1+y-y}$
$=\frac{y}{1}=y$
Hence, f is onto.
5. Show that the function $f: R \rightarrow R$ given by $f(x)=x 3$ is injective.

SOLUTION

Let $x_{1}, x_{2} \in R$ be such that,
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}^{3}=x_{2}^{3} \Rightarrow x_{1}=x_{2}$
$\therefore \mathrm{f}$ is one-one. Hence, $\mathrm{f}(\mathrm{x})=x^{3}$ is injective.
6. Give example of two functions $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$ such that gof is injective but g is not injective.
(Hint : Consider $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=|x|)$

SOLUTION

$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$
Let $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=|\mathrm{x}|$. Since, $\mathrm{g}(\mathrm{x})=\mathrm{g}(-\mathrm{x})=|x| \forall x \in Z$
$\therefore \mathrm{g}$ is not one - one $\Rightarrow \mathrm{g}$ is not injective.
Since, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z} \Rightarrow$ gof $: \mathrm{N} \rightarrow \mathrm{Z}$. Let $x_{1}, x_{2} \in N$.
Now, (gof) $\left(x_{1}\right)=(g \circ f)\left(x_{2}\right) \Rightarrow g\left(x_{1}\right)=g\left(x_{2}\right)\left|x_{1}\right|=\left|x_{2}\right|$
$\Rightarrow x_{1}=x_{2}[0]$
\therefore gof is one-one. Hence, gof is injective.
7. Give example of two functions $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ and $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{N}$ such that gof is onto but f is not onto.
(Hint : Consider $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})= \begin{cases}x-1, & \text { if } x>1 \\ 1, & \text { if } x=1\end{cases}$

SOLUTION

Consider, $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\left\{\begin{array}{lll}x-1, & \text { if } & x>1 \\ 1, & \text { if } & x=1\end{array}\right.$
$f(x)=x+1 \geq 1+1 \forall x \in N \Rightarrow f(x) \geq 2 \forall x \in N$.
Clearly, range of $f \neq N[1 \notin$ Range of f$]$
$\therefore \mathrm{f}$ is not onto.
Now, (gof) : $\mathrm{N} \rightarrow \mathrm{N}$ such that $(\mathrm{gof})(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(\mathrm{x}+1)=(\mathrm{x}+1)-1[\mathrm{x}+1>1$ for all $\mathrm{x} \in \mathrm{N}]=x \forall x \in N$
\therefore Range of (gof) $=\mathrm{N}$ [gof is identity function] Hence, gof is onto.
8. Given a non empty set X, consider $P(X)$ which is the set of all subsets of X. Define the relation R in $P(X)$ as follows : For subsets A, B in $P(X), A R B$ if and only if $A \subset B$. Is R an equivalence relations on $P(X)$? Justify your answer.

SOLUTION

Relations \& Functions

(i) Since $\mathrm{A} \subset \mathrm{A} \forall A \in \mathrm{P}(\mathrm{X}) \Rightarrow$ ARA
$\therefore \mathrm{R}$ is reflexive.
(ii) Let $\mathrm{ARB} \Rightarrow \mathrm{A} \subset \mathrm{B}$ and $\mathrm{BRA} \Rightarrow \mathrm{B} \subset \mathrm{A}$
$\Rightarrow A=B$ (which is not so) $[\Rightarrow A R B \nRightarrow B R A \Rightarrow R$ is not symmetric
(iii) $\mathrm{ARB}, \mathrm{BRC} \Rightarrow \mathrm{A} \subset \mathrm{B}, \mathrm{B} \subset \mathrm{C} \Rightarrow \mathrm{f} \subset \mathrm{C} \Rightarrow \mathrm{ARC} \Rightarrow \mathrm{R}$ is transitive

Thus R is not an equivalence relation of $\mathrm{P}(\mathrm{X})$.
9. Given a non-empty set X , consider the binary operation $*: \mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{X}) \rightarrow \mathrm{P}(\mathrm{X})$ given by $\mathrm{A} * \mathrm{~B}=\mathrm{A} \cap \mathrm{B} \forall \mathrm{A}$, B in $\mathrm{P}(\mathrm{X})$, where $\mathrm{P}(\mathrm{X})$ is the power set of X . Show that X is the identity element for this operation and X is the only invertible element in $P(X)$ with respect to the operation $*$.

SOLUTION

(i) Let $\mathrm{E} \in \mathrm{P}(\mathrm{X})$ be the identity element.

Then, $\mathrm{A} * \mathrm{E}=\mathrm{E} * \mathrm{~A}=\mathrm{A} \forall \mathrm{A} \in \mathrm{P}(\mathrm{X})$
$\Rightarrow \mathrm{A} \cap \mathrm{E}=\mathrm{E} \cap \mathrm{A}=\mathrm{A} \forall \mathrm{A} \in \mathrm{P}(\mathrm{X})$
$\Rightarrow X \cap E=X$ because $X \in P(X) \Rightarrow X \subset E$.
Also, Thus, $\mathrm{E}=\mathrm{X}$. Hence, X is the identity element.
(ii) Let $\mathrm{A} \in \mathrm{P}(\mathrm{X})$ be invertible. Then, there exists $\mathrm{B} \in \mathrm{P}(\mathrm{X}$ such that $\mathrm{A} * \mathrm{~B}=\mathrm{B} * \mathrm{~A}=\mathrm{X}$, where X is the identity element.
$\Rightarrow \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}=\mathrm{X} \Rightarrow \mathrm{X} \subset \mathrm{A}, \mathrm{X} \subset \mathrm{B}$ Also, A, B
$\therefore \mathrm{A}=\mathrm{X}=\mathrm{B}$.
Hence, X is the only invertible element and $\mathrm{A}^{-1}=\mathrm{B}=\mathrm{X}$.
10. Find the number of all onto functions from the set $\{1,2,3, \ldots, n\}$ to itself.

SOLUTION

The number of onto functions that can be defined from a finite set X containing n elements on to a finite set Y containing n elements.
Let $\mathrm{X}:\{1,2, \ldots, n\}$ and $\mathrm{Y}:\{1,2,3, \ldots, n\}$
One of the elements of set X (say 1) has any one of the pre-image $1,2, \ldots, n$ i.e. n ways.
In similar way, the element (say 2) in ($\mathrm{n}-1$) ways
\therefore Total number of possible ways $=n(n-1)(n-2) \ldots$...3.2.1
$=\mathrm{n}$!
11. 11. Let $\mathrm{S}=\{a, b, c\}$ and $\mathrm{T}=\{1,2,3\}$. Find F^{-1} of the following functions F from S to T , if it exists.
(i) $\mathrm{F}=\{(a, 3),(b, 2),(c, 1)\}$
(ii) $\mathrm{F}=\{(a, 2),(b, 1),(c, 1)\}$

SOLUTION

Given, $\mathrm{S}=\{a, b, c\}$ and $\mathrm{T}=\{1,2,3\}$. (i) $\mathrm{F}=\{(a, 3),(6,2),(c, 1)\}$
i.e. $\mathrm{F}(\mathrm{a})=3, \mathrm{~F}(\mathrm{~b})=2, \mathrm{~F}(\mathrm{c})=1$
$\Rightarrow F^{-1}(3)=\mathrm{a}, F^{-1}(2)=\mathrm{b}, F^{-1}(1)=\mathrm{c}$
$\therefore F^{-1}=\{(3, a),(2, b),(1, c)\}$
(ii) $\mathrm{F}=\{(a, 2),(b, 1)(c, 1)\}$

F is not one-one function, since element b and c have the same image 1 , so F^{-1} does not exist.
12. Consider the binary operations $*: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{o}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ defined as $\mathrm{a} * \mathrm{~b}=|a-b|$ and aob $=\mathrm{a}, \forall a, b \in R$. Show that $*$ is commutative but not associative and o is associative but not commutative. Further, show that $\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}, \mathrm{a} *(\mathrm{boc})=(\mathrm{a} * \mathrm{~b}) \mathrm{o}$ $(\mathrm{a} * \mathrm{c}$). (If it is so, we sav that the operation $*$ distributes over the operation o]. Does o distribute over $*$? Justify your answer.

SOLUTION

For commutativity :
$\mathrm{a} * \mathrm{~b}=|a-b|$ and $\mathrm{b} * \mathrm{a}=|b-a|=|a-b|$

Relations \& Functions

$\therefore \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$
Thus, the operation $*$ is commutative.
For associativity
Consider, $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=\mathrm{a} *|b-c|=|a-|b-c||$
Also $(\mathrm{a} * \mathrm{~b}) * c=|a-b| * c=||a-b|-c|$
$\therefore \mathrm{a} *(\mathrm{~b} * \mathrm{c}) \neq(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$
Thus, the operation $*$ is not associative.
For commutativity
$\mathrm{aob}=\mathrm{a} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$. Now, boa $=\mathrm{b} \Rightarrow \mathrm{aob} \neq \mathrm{boa}$
Thus, operation o is not commutative.
For associativity
$\mathrm{ao}(\mathrm{boc})=\mathrm{aob}=\mathrm{a}$ and $(\mathrm{aob}) \mathrm{oc}=\mathrm{aoc}=\mathrm{a}$
ao $(\mathrm{boc})=(\mathrm{aob})$ oc. Thus, operation o is associative.
To prove : $\mathrm{a} *(\mathrm{boc})=(\mathrm{a} * \mathrm{~b}) \mathrm{o}(\mathrm{a} * \mathrm{c})$
L.H.S. $=a^{*}(b o c)=a * b=|a-b|$
R.H.S. $=(a * b) o(a * c)=|a-b| o|a-c|=|a-b|$

Thus, $\mathrm{a} *(\mathrm{boc})=(\mathrm{a} * \mathrm{~b}) \mathrm{o}(\mathrm{a} * \mathrm{c})$. Hence proved.
Another distributive law
$\mathrm{ao}(\mathrm{b} * \mathrm{c})=(\mathrm{aob}) *(\mathrm{aoc})$
L.H.S. $=a o(b * c)=a o(|b-c|)=a$
R.H.S. $=(a \circ b) *(a \circ c)=a * a=|a-a|=0$.

As, L.H.S. $*$ R.H.S. Hence, the operation o does not distribute over $*$.
13. Given a non-empty set X, let $*: P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B=(A-B) \cup(B-A), \forall A, B \in P(X)$. Show that the empty set ϕ is the identity for the operation $*$ and all the elements A of $\mathrm{P}(\mathrm{X})$ are invertible with $A^{-1}=\mathrm{A}$.
(Hint : $(\mathrm{A}-\phi) \cup(\phi-\mathrm{A})=\mathrm{A}$ and $(\mathrm{A}-\mathrm{A}) \cup(\mathrm{A}-\mathrm{A})=\mathrm{A} * \mathrm{~A}=\phi)$.

SOLUTION

To show : ϕ is the identity
For every $\mathrm{A} \in P(X)$, we have
$\phi * A=(\phi-A) \cup(A-\phi)=\phi \cup A=A$
and $A * \phi=(A-\phi) \cup(\phi-A)=A \cup \phi=A$
$\Rightarrow \phi$ is the identity element for the operation $*$ on $\mathrm{P}(\mathrm{X})$.
Also, $\mathrm{A} * \mathrm{~A}=(\mathrm{A}-\mathrm{A}) \cup(\mathrm{A}-\mathrm{A})=\phi \cup \phi=\phi$
\Rightarrow Every element A of $\mathrm{P}(\mathrm{X})$ is invertible with $A^{-1}=A$
14. Define a binary operation $*$ on the set $0,1,2,3,4,5$ as $a * b= \begin{cases}a+b, & \text { if } a+b<6 \\ a+b-6, & \text { if } a+b \geq 6\end{cases}$

Show that zero is the identity forth is operation and each element $a \neq 0$ of the set is invertible with $6-a$ being the inverse of a.

SOLUTION

For identity
If e be the identity element, then $\mathrm{a} * \mathrm{e}=\mathrm{e} * \mathrm{a}=\mathrm{a}$
Now, $\mathrm{a} * 0=\mathrm{a}+0=\mathrm{a}$ and $0 * \mathrm{a}=0+\mathrm{a}=\mathrm{a}$
Thus, $\mathrm{a} * 0=0 * \mathrm{a}=\mathrm{a}$. Hence, 0 is the identity element of the operation.
For inverse
If b be the inverse of a. then $a * b=b * a=e$.
Now $a *(6-a)=a+(6-a)-6=0$
and $(6-a) * a=(6-a)+a-6=0$.
Hence, each element a of the set is invertible with inverse 6-a.

Relations \& Functions

15. Let $\mathrm{A}=\{-1,0,1,2\}, \mathrm{B}=\{-4,-2,0,2\}$ and $\mathrm{f}, \mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ be function defined by $\mathrm{f}(\mathrm{x})=x^{2}-x, x \in \operatorname{Aand} g(x)=2\left|x-\frac{1}{2}\right|-1, x \in A$. Are f and g equal ? Justify your answer.
(Hint : One may note that two functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a}) \forall a \in A$, are called equal functions).
SOLUTION
When $\mathrm{x}=-1, \mathrm{f}(-1)=12+1=2$
and $g(-1)=2\left|-1-\frac{1}{2}\right|-1=2$
When $\mathrm{x}=0, \mathrm{f}(0)=0$ and $\mathrm{g}(0)=2\left|-\frac{1}{2}\right|-1=2 \times \frac{1}{2}-1=0$
When $\mathrm{x}=1, \mathrm{f}(1)=1^{2}-1=0$
and $g(1)=2\left|1-\frac{1}{2}\right|-1=2 \times \frac{1}{2}-1=0$
When $\mathrm{x}=2, \mathrm{f}(2)=22-2=2$ and $\mathrm{g}(2)=2\left|2-\frac{1}{2}\right|-1=3-1=2$
Thus, for each $a \in A, f(a)=g(a)$. Hence, f and g are equal functions.
16. Let $\mathrm{A}=\{1,2,3\}$. Then number of relations containing $(1,2)$ and $(1,3)$, which are reflexive and symmetric but not transitive is
(A) 1
(B) 2
(C) 3
(D) 4

SOLUTION

(A) There is only one relation containing $(1,2)$ and $(1,3)$ which is reflexive and symmetric but not transitive.
17. Let $\mathrm{A}=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is
(A) 1
(B) 2
(C) 3
(D) 4

SOLUTION

(B) : There are two equivalence relations containing (1,2).
18. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be the Signum Function defined as $f(x)=\left\{\begin{array}{ll}1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{array}\right.$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be the Greatest Integer Function given by $g(x)=[x]$, where $[x]$ is greatest integer less than or equal to x. Then, does fog and gof coincide in $(0,1]$?

SOLUTION

For $\mathrm{x} \in(0,1]$
$($ fog $)(\mathrm{x})=f(g(x))=f([x])$
$=\left\{\begin{array}{ll}f(0), & \text { if } \quad 0<x<1 \\ f(1), & \text { if } \quad x=1\end{array}=\left\{\begin{array}{lll}0, & \text { if } & 0<x<1 \\ 1, & \text { if } & x=1\end{array}\right.\right.$
And $(\operatorname{gof})(x)=g(f(x))=g(1)=[1]=1$
$\Rightarrow(g o f)(x)=1 \forall x \in(0,1]$
From (1) and (2), (fog) and (gof) do not coincide in (0,1 .
19. Number of binary operations on the set $\{a, b\}$ are
(A) 10
(B) 16
(C) 20
(D) 8

SOLUTION

(B) There are two elements in the set $\{a, b\} . \therefore$ Number of binary operations $=24=16$.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE \& SAT

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
3. C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
4. I.C.S.E. \& I.S.C.
\star Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

