NCERT - Exercise - 1.4

wither 1. Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

(i) Or Z+, define * by a*b=a-b

(ii) On Z+, define * by a*b = ab

(iii) On R, define * by a * b $= ab^2$

(iv) On Z+, define * by a * b = |a - b|

(v) On Z+, define * by a * b = a

SOLUTION

(i) $Z + = \{1, 2, 3, ...\}$, we have a * b = a - bLet a = 1, $b = 3 \Rightarrow a * 6 = 1 - 3 = -2 \notin Z +$

Hence, the operation * is not a binary operation on Z+.

(ii) $Z += \{1, 2, 3, \}$, we have a * b = ab

Let $a = 2, 6 = 4 \Rightarrow a*b = 2 * 4 = 8 \in \mathbb{Z}+$

Hence, the operation * is a binary operation on Z+.

(iii) R (set of real numbers), we have $a * b = ab^2$

Let a = 5.2, $b = 3 \Rightarrow a*b = 5.2(3)2 = 46.8 \in \mathbb{R}$

Hence, the operation * is a binary operation on R.

(iv) $Z + = \{1, 2, 3,\}$, we have a * b = |a - b|Let a = 3, $b = 7 \Rightarrow a * b = |3-7| = |-7| = 4 \in Z^+$ Hence, the operation * is a binary operation on Z+.

(v) $Z + = \{1, 2, 3,\}$, we have a * b = aLet a=5, $b=7 \Rightarrow a*b = 5 \in Z^+$ Hence, the operation * is a binary operation on Z

2. For each operation *defined below, determine whether * is binary, commutative or associative.

(i) On Z, define a * b = a - b(ii) On Q, define a*b=ab+4ab (iii) On Q, define $a * b = \frac{ab}{2}$ (iv) On Z+, define a * b = 2ab(v) On Z+, define a*b=ab(vi) On R- $\{-1\}$, define a $*b = \frac{a}{b+1}$ **SOLUTION** (i) a * b = a - b on Z For commutativity a * b = a - b and $b * a = b - a = -(a - b) \neq a * b$ \Rightarrow a * b \neq b * a For associativity a * (b * c) = a * (b - c) = a - (b - c) = (a - b + c)And (a * b) * c = (a - b) * c = a - b - c. $\therefore a * (b * c) \neq (a * b) * c$ Thus, the operation * is neither commutative nor associative.

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

(ii) a * b = ab + 1 on Q

For commutativity a * b = ab + 1 and b * a = ba + 1 = ab + 1. a * b = b * a

For associativity

From www.mathsudwit a * (b * c) = a * (bc + 1) = a (bc + 1) + 1 = abc + a + 1And, (a * b) * c = (ab + 1) * c = (ab + 1) c + 1 = abc + c + 1 $\therefore a * (b * c) \neq (a * b) * c$

Thus, the operation * is commutative but not associative.

(iii) a* b= $\frac{ab}{2}$ on Q

For commutativity

a* b =
$$\frac{ab}{2}$$
 and b* a = $\frac{ba}{2} = \frac{ab}{2}$
∴ a * b = b * a

For associativity

$$a* (b* c) = a* \left(\frac{bc}{2}\right) = \frac{abc/2}{2} = \frac{abc}{4}$$

and,
$$(a* b)* c = \left(\frac{ab}{2}\right)*(c) = \left(\frac{abc/2}{2}\right) = \frac{abc}{4}$$

$$\therefore a* (b* c) = (a* b)* c$$

Thus, the operation * is commutative and also associative,

(iv) a * b = 2ab, on Z+

For commutativity

a * b = 2ab and b * a = 2ba = 2ab. $\therefore a * b = b * a$

For associativity

a* (b* c)=a*(2bc)=(2)^{*a*·2^{*bc*}} and (a* b)* c = (2ab) * c = $2^{2^{ab} \times c}$

$$a * (b * c) \neq (a * b) * c$$

Hence, the operation * is commutative but not associative.

(v) a * b = ah on Z⁻

For commutativity

a * b = ah and b * a = ba. $\therefore a * b \neq b * a$

For associativity

 $a* (b*c) = a* (bc) = (a)^{b^{c}} and (a*b) * c = (ab) * c = (ab)c = abc$ Thus, $a * (b * c) \neq (a * b) * c$

Hence, the operation * is neither commutative nor associative.

(vi)
$$a * b = \frac{a}{b+1}$$
 on $R - \{-1\}$
For commutativity

commutativity

$$a * b = \frac{a}{a+1}$$
 and $b * a = \frac{b}{a+1}$ $\therefore a * b \neq b * a$

For associativity

$$a * (b * c) = a * \left(\frac{b}{c+1}\right) = \frac{a}{\frac{b}{c+1}+1} = \frac{a(c+1)}{b+c+1}$$

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

and
$$(a * b) * c = \left(\frac{a}{b+1}\right) * c = \frac{a}{\frac{b+1}{c+1}} = \frac{a}{(b+1)(c+1)}$$

 $\therefore a * (b * c) \neq (a * b) * c$

Hence, the operation * is neither commutative nor associative.

3. Consider the binary operation () on the set $\{1, 2, 3, 4, 5\}$ defined by $a^b = min\{a, b\}$. Write the operation table of the operation A. www.mathstuk

SOLUTION

Let $A = \{1, 2, 3, 4, 5\}$ $a^b =$ minimum of a and b

4. Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table.

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

(i) Compute (2 * 3) * 4 and 2 * (3 * 4).

(ii) Is * commutative ?

(iii) Compute (2 * 3) * (4 * 5).

(Hint : use the following table)

SOLUTION

(i) 2 * 3 = 1 and 3 * 4 = 1

Now, (2 * 3) * 4 = 1 * 4 = 1 and 2 * (3 * 4) = 2 * 1 = 1

(ii) 2 * 3 = 1 and $3 * 2 = 1 \therefore 2 * 3 = 3 * 2$

Hence, the operation is commutative.

(iii) (2 * 3) * (4 * 5) = 1 * 1 = 1.

5. Let * be binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a *' b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Q. 4 above? Justify your answer.

SOLUTION

Let $A = \{1, 2, 3, 4, 5\}$

a*' b = HCF of a and b is given by

We observe that the operation *' is the same as the operation * in Q. 4.

6. Let * be the binary operation on N given by a*b = L.C.M. of a and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative ?

(iii) Is * associative ?

(iv) Find the identity of * in N

(v) Which elements of N are invertible for the operation *?

SOLUTION

a * b = L.C.M. of a and b.

(i) 5 * 7 = L.C.M. of 5 and 7 = 3520 * 16 = L.C.M. of 20 and 16 = 80

(ii) a * b = L.C.M. of a and b = L.C.M. of b and a = b * a.

Thus, operation * is commutative.

Studyit

(iii) a * (b * c) = a * (L.C.M. of b and c)

= L.C.M. of (a and (L.C.M. of b and c))

= L.C.M. of a, b and c.

Similarly, (a * b) * c = (L.C.M. of a and b) * c

= L.C.M. of ((L.C.M. of a and b) and c) = L.C.M. of a, b and c

Thus, a * (b * c) = (a * b) * c

Hence, the operation * is associative.

(iv) Identity of * in N = 1 because, a * 1

= L.C.M. of a and 1 = 1

(v) Only the element 1 in N is invertible for the operation * because $1 * \frac{1}{1} = 1$.

7. Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b=L.C.M. of a and b a binary operation? Justify your answer,

SOLUTION

Let $A = \{1, 2, 3, 4, 5\}$ and a * b = L.C.M. of a and b.

2 * 3 = L.C.M. of 2 and $3 = 6 \notin A$

Hence, the operation * is not a binary operation.

8. Let * be the binary operation on N defined by a * b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N ?

SOLUTION

Commutativity

a * b = H.C.F. of a and b = H.C.F. of b and a = b * a

Thus, operation * is commutative.

Associativity

(a * b) * c = (H.C.F. of a and b) * c

= H.C.F. of [(H.C.F. of a and b) and c] = H.C.F. a, b and c

a * (b * c) = a * [H.C.F. of b and c]

= H.C.F. of [a and (H.C.F. of b and c)] = H.C.F. of [a, b and c]

 \Rightarrow (a * b) * c = a * (b * c). Thus, operation * is associative.

Identity

Now, $1 * a = a * 1 \neq a$

There does not exist any identity element.

9. Let * be a binary operation on the set Q of rational numbers as follows:

(i)
$$a * b = a-b$$

(ii) $a * b = a^2 + b^2$
(iii) $a * b = a + ab$
(iv) $a * b = (a-b)^2$
(v) $a * b = \frac{ab}{4}$

(vi) $\mathbf{a} * \mathbf{b} = ab^2$

Find which of the binary operations are commutative and which are associative.

SOLUTION

(i) For commutativity :

a * b = a - b = -(b - a) = -b * a

Thus, the operation * is not commutative.

For associativity :

(a*b)*c=(a-b)*c=(a-b)-c=a-b-cAnd, a*(b*c)=a*(b-c)=a-(b-c)=a-b+c. $(a*b)*c\neq a*(b*c)$ Thus, the operation * is not associative.

(ii) For commutativity

trom www.mathstudy. $a * b - a^2 + b^2 = b^2 + a^2 = b * a$ Thus, the operation * is commutative.

For associativity

(a * b) * c = $(a^2 + b^2) * c = (a^2 + b^2) + c^2$ and $a * (b * c) = a * (b^2 + c^2) = a^2 + (b^2 + c^2)$ Thus, $(a * b) * c \neq a * (b * c)$

Hence, the operation * is not associative.

(iii) For commutativity

a * b = a + ab = a(1 + b) and b * a = b + ba = b(1 + a) $\therefore a * b \neq b * a$

Thus, the operation * is not commutative. For associativity

(a * b) * c = (a + ab) * c = (a + ab) + (a + ab)c

and a * (b * c) = a * (b + bc) = a + a(b + bc)

$$\therefore (a * b) * c \neq a * (b * c)$$

Hence, the operation * is not associative.

(iv) For commutativity $\mathbf{a} * \mathbf{b} = (\mathbf{a} - b)^2 = (\mathbf{b} - a)^2 = \mathbf{b} * \mathbf{a}$.

Thus, the operation * is commutative.

For associativity

 $a * (b * c) = a * (b-c)^2 = [a - (b - c)^2]^2$ and $(a * b) * c = (a - b)^2 * c = [(a - b)^2 - c]^2$ $\therefore a * (b * c) \neq (a * b) * c$

Hence, the operation * is not associative.

(v) For commutativity

 $a * b = \frac{ab}{4} = \frac{ba}{4} = b * a$

Thus, the operation * is commutative.

For associativity a *(b * c) = a*
$$\frac{bc}{4} = \frac{abc}{4} = \frac{abc}{16}$$

and (a *b) * c = $\frac{ab}{4}$ *c = $\frac{\frac{ab}{4} \cdot c}{4}$ = $\frac{abc}{16}$ \therefore a * (b * c) = (a * b) * c Thus, the operation * is associative.

(vi) For commutativity $a * b = ab^2$ and $b * a = ba^2$ $\therefore a * b \neq b * a$ Thus, the operation * is not commutative. For associativity $a * (b * c) = a * (bc^2) = a(bc^2)^2 = ab2c4$ and $(a * b) * c = (ab^2) * c = (ab^2)c^2 = ab^2c^2$ $\therefore a * (b * c) \neq (a * b) * c$ Thus, the operation * is not associative.

www.mathsudd

10. Find which of the operations given above has identity.

SOLUTION

(i) If e is an identity element, then

 $\mathbf{a} * \mathbf{e} = \mathbf{a} = \mathbf{e} * \mathbf{a} \ \forall a \in Q$

 \Rightarrow a-e= e-a = $\forall a \in Q \Rightarrow$ a- e = a and e - a= a

 \Rightarrow e = 0 and e= 2a $\forall a \in Q$

Which is not possible. Hence, identity element does not exist,

(ii) If e is an identity element, then

 $\mathbf{a} * \mathbf{e} = \mathbf{a} = \mathbf{e} * \mathbf{a} \ \forall a \in Q \Rightarrow a^2 + e^2 = e^2 + a^2 = \mathbf{a} \ \forall a \in Q.$

$$\Rightarrow \mathbf{e} = \sqrt{a - a^2} \ \forall a \in Q$$

Which is not possible. Hence, identity element does not exist,

(iil) If e is an identity element, then

- $a * e = a = e * \forall a \in Q$
- \Rightarrow a + ae= e + ae= a $\forall a \in Q$.
- \Rightarrow a + ae= a and e + ae = a

$$\Rightarrow$$
 e = 0 and e = $\frac{a}{1+a} \forall a \in Q$

Which is not possible. Hence, identity element does not exist,

(iv) If e is an identity element, then

 $a*e = a = e* a \forall a \in Q$ $\Rightarrow (a - e)^{2} = (e - a)^{2} = a \forall a \in Q. \Rightarrow (a - e)^{2} = a \text{ and } (e - a)^{2} = a$ $\Rightarrow a - e = \pm \sqrt{a} \text{ and } e - a = \pm \sqrt{a} \Rightarrow e = a \pm \sqrt{a} \text{ and } e = a \pm \sqrt{a} \forall a \in Q$ Which is not possible. Hence, there is no identity element.

(v) If e is an identity element, then

$$\mathbf{a} \ast \mathbf{e} = \mathbf{a} = \mathbf{e} \ast \mathbf{a} \ \forall a \in Q.$$

$$\Rightarrow \frac{ae}{4} = \frac{ea}{4} = a \ \forall a \in Q$$

So, 4 is the identity element.

(vi) If e an identity element, then as $e = a = e * a \forall a \in Q$. $\Rightarrow e^2 = ea^2 = a$. $\Rightarrow ae^2 = a$ and $ea^2 = a$

$$\Rightarrow e = \pm 1$$
 and $e = \frac{1}{4}$

Which is not possible. Hence, identity element does not exist.

11. Let $A=N \times N$ and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)Show that * is commutative and associative. Find the identity element for * on A, if any.

SOLUTION

A = N × N and * is a binary operation defined on A. For commutativity (a, b) * (c, d)= (a + c, b + d) = (c + a, d + b) = (c, d)* (a, b) The operation * is commutative.

For associativity [(a, b) * (c, d)]* (e, f) = (a + c, b + d)* (e, f) = (a + c + e, b + d + f)Also, (a, b) * [(c, d)* (e, f)] = (a, b) * (c + e, d + f) = (a + c + e, b + d + f) $\therefore [(a,b)* (c, d)] * (e, f) = (a, b) * [(c, d) * (e, f)]$

www.mathsudwit

Hence, the operation * is associative.

For identity

Let identity function be $(e, f) \therefore (a, b) * (e, f) = (a, b)$

 $(a + e, b + f) = (a, b) \Rightarrow a + e = a, b + f = b$

 \Rightarrow e = 0, f = 0. But, 0 \notin N

Hence, identity element does not exist.

12. State whether the following statements are true or false. Justify.

(i) For an arbitrary binary operation * on a set N, a $*a = a \forall a \in Q$

(ii) If * is a commutative binary operation on N, then a*(b*c)=(c*b)*a

SOLUTION

(i) False. A binary operation on N is defined as :

 $\mathbf{a} \ast \mathbf{a} = \mathbf{a} \; \forall a \in Q.$ For example, $\mathbf{a} \ast \mathbf{b} {=} \mathbf{a} + \mathbf{b} \; \forall a, b \in Q$, then

 $a * a = a + a = 2a \neq a.$

Here '*' is not defined.

(ii) True

a *(b *c)=(b *c)*a=(c * b) *a. (b *c=c* b is commutative)

13. Consider a binary operation * on N defined as a $*b = a^3 + b^3$. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?

SOLUTION

(B) For commutative

 $a * b = a^3 + b^3 = b^3 + a^3 = b * a$. \therefore * is a commutative operation.

For associative : $a * (b * c) = a * (b^3 + c^3) = a^3 + (b^3 + c^3)^3$ and $(a * b) * c = (a^3 + b^3) * c = (a^3 + b^3)^3 + c^3$. $\Rightarrow a * (b * c) \neq (a * b) * c$. * is not associative.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE & SAT

www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)

★ Chapter Tests (Full Syllabus- Fully Solved)

★ Twenty Mock Tests (Full Length - Fully Solved)

- 2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
- 3. C.BS.E.

★ Work-Book Class XII (Fully Solved)

★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Past Fifteen Years Topicwise Questions (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

4. I.C.S.E. & I.S.C.

★Work-Book Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)

6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

USE E-BOOKS & SAVE ENVIRONMENT WWW.MATHSTUDY.IN