1. If the roots of the quadratic equation $a x^{2}+b x+c=0$ are in the ratio $3: 2$, find the relation between $a, b$, and $c$.
2. The quadratic equation $x^{2}-(k+6) x+9=0$ has equal roots. Find the value of $k$.
3. If one root of $x^{2}-3 x+1=0$ is 2 , find the other root.
4. Find the roots of the equation $2 x^{2}-4 x-6=0$ using the quadratic formula.
5. Given that one root of the quadratic equation $x^{2}+p x+45=0$ is 5 , find the value of $p$.
6. If the sum and product of the roots of the equation $x^{2}-x-1=0$ are equal, find the roots.
7. Find the condition under which the equation $a x^{2}+b x+c=0$ will have real and distinct roots.
8. The quadratic equation $3 x^{2}-2 a x+7 a=0$ has one root that is twice the other. Determine $a$.
9. Solve for $x$ in the equation $\sqrt{2} x^{2}-4 x+\sqrt{8}=0$.
10. If the discriminant of $x^{2}+k x+16=0$ is 64 , find $k$.
11. The equation $x^{2}-10 c x+21 c=0$ has roots of the form $p$ and $q$. If $p-q=1$, find $c$.
12. Given the quadratic equation $x^{2}-(a+1) x+a=0$, for what value of $a$ will one root be the square of the other?
13. Determine the range of values for $m$ so that the equation $m x^{2}-2(m+1) x+m+7=0$ has real roots.
