🚱 DELHI BOARD [2008 SET - I CBSE XII MATHEMATICS]

Instructions

- 1. All questions are compulsory.
- The question paper consists of 29 questions into three sections A,B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
- 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- 4. There is no overall choice . However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted.

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

7. Evaluate
$$\int_0^1 \frac{dx}{1+x^2}$$

Answer: $\frac{\pi}{4}$

8. Find a unit vector in the direction of $\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$

Answer:
$$\frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k}$$

9. Find the angle between the vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} - \hat{k}$

Answer :
$$cos^{-1}(-\frac{1}{3})$$

athstudyit 10. For what value of λ are the vectors $\vec{a} = 2\hat{i} + \lambda j + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ perpendicular to each other ?

Answer :
$$\frac{5}{2}$$

SECTION B

11. (a) Is the binary operation * defined on set N, given by $a * b = \frac{a+b}{2}$ for all, $a, b \in Q$. commutative. (b) Is the above binary operation associative.

Answer : Yes, No

12. Prove the following

$$tan^{-1}\frac{1}{3} + tan^{-1}\frac{1}{5} + tan^{-1}\frac{1}{7} + tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

13. Let $A = \begin{pmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{pmatrix}$ Express A as sum of two matrices such that one is symmetric and the other is skew symmetric.

Answer:
$$\begin{pmatrix} 3 & 3 & 5/2 \\ 3 & 1 & 9/2 \\ 5/2 & 9/2 & 7 \end{pmatrix} + \begin{pmatrix} 0 & -1 & 5/2 \\ 1 & 0 & -3/2 \\ -5/2 & 3/2 & 0 \end{pmatrix}$$

14. For what value of k is the following function continuous at x = 2?

$$f(x) = \begin{cases} 2x + 1; x < 2\\ k; x = 2\\ 3x - 1; x > 2 \end{cases}$$

Answer: 5

15. Differentiate the following w.rt. x.

$$\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$$

Answer :
$$\frac{1}{2\sqrt{1-x^2}}$$

16. Find the equation of tangent to the curve x = sin3t, y = cos2t, at $t = \frac{\pi}{4}$

Answer:
$$2\sqrt{2}x - 3y - 2 = 0$$

17. Evaluate

$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

Answer	:	π^2
		4

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

18. Solve the following differential equation

$$(x^2 - y^2)dx + 2xydy = 0$$

given that y = 1, when x = 1

Answer : $x^2 + y^2 = 2x$

OR

Solve the following differential equation

$$\frac{dy}{dx} = \frac{x(2y-x)}{x(2y+x)}$$

www.thathstudy

If
$$y = 1$$
, when $x = 1$

Answer:
$$\frac{1}{2}log2 + \frac{3}{\sqrt{7}}tan^{-1}\frac{3}{\sqrt{7}}$$

19. Solve the following differential equation

$$\cos^2 x \frac{dy}{dx} + y = tanx$$

Answer:
$$y = (tanx - 1) + ce^{-tanx}$$

20. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$

If
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$
 and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$ show that angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$

21. Find the shortest distance between the following lines

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$
$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
OR

Answer : $2\sqrt{29}$

Find the point on the line

$$\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-2}{2}$$

at a distance $3\sqrt{2}$ from the point (1,2,3)

Answer : (-2,-1,3), or (56/17, 43/17, 111/17)

22. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of number of successes.

Answer :	Х	0	1	2	3	4
	P(x)	625 / 1296	500/1296	150/1296	20/1296	1/1296

SECTION - C

Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

23. Using properties of determinants prove the following

$$\begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \gamma + \alpha & \alpha + \beta \end{vmatrix} = (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$$

24. Show that the rectangle of maximum area that can be inscribed in a circle is a square .

OR

SUUCH

Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is $\frac{1}{2}h$

25. Using integration find the area of the region bounded by parabolay² = 4x and the circle $4x^2 + 4y^2 = 9$

Answer:
$$\frac{\sqrt{2}}{6} + \frac{9}{4}\cos^{-1}(\frac{1}{3})$$
 sq units

26. Evaluate

$$\int_{-a}^{a} \sqrt{\frac{a-x}{a+x}} dx$$

Answer : $a\pi$

27. Find the equation of the plane passing through the point (-1,-1,2) and perpendicular to each of the following planes :

2x+3y - 3z = 2 and 5x - 4y + z = 6

Find the equation of the plane passing through the points (3,4,1) and (0,1,0) and parallel to the line $\frac{x+3}{2} = \frac{y-3}{7} = \frac{z-2}{5}$

Answer : 8x-13y +15z +13=0

28. A factory owner purchases two types of machines, A and B for his factory. The requirements and the limitations for the machines are as follows :

Machine	Area occupied	Labour force	Daily output (in units)
А	1000	12 men	60
В	1200	8 men	40

He has maximum area of 9000 m^2 available and 72 skilled labourers who can operate both the machines. How many machines of each type should he buy to maximise the daily output.

Answer : A = 6, B = 0

29. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter, a car and a truck are 0.01, 0.03, and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver.

Answer : $\frac{1}{52}$

C.B.S.E. Class XII

www.mathstudy.in

Our Mathematics E-Books

- 1. J.E.E. (Join Entrance Exam)
 - ★ Chapter Tests (Full Syllabus- Fully Solved)
 - ★ Twenty Mock Tests (Full Length Fully Solved)
- 2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
- 3. C.BS.E.
 - ★ Work-Book Class XII (Fully Solved)

★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Past Fifteen Years Topicwise Questions (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

4. I.C.S.E. & I.S.C.

★Work-Book Class XII (Fully Solved)

★ Chapter Test Papers Class XII (Fully Solved)

★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)

★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)

5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)

6. SAT - II Subject Mathematics (15 Papers - Fully Solved)

USE E-BOOKS & SAVE ENVIRONMENT WWW.MATHSTUDY.IN