

#### **CBSE CLASS XII MATHEMATICS - 2004**

## **Instructions**

- 1. All questions are compulsory.
- 2. The question paper consists of 29 questions into three sections A,B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
- 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- 4. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted.

### SECTION -A

1. Does the following table represent a probability distribution?

| X    | -1  | 0   | 1   |
|------|-----|-----|-----|
| P(X) | 1/3 | 1/2 | 1/6 |

Answer: Yes

2. The total cost C(x) in rupees associated with the production of x units of an item is given by  $C(x) = 0.007x^3 - 0.003x^2 + 15x + 4000$ . Find the marginal cost when 17 units are produced.

Answer:= 
$$Rs20.967$$
.

3. Evaluate:  $\int (x^2 + 5)^3 dx$ 

Answer: 
$$\frac{x^7}{7} + 3x^5 + 25x^3 + 125x + C$$

- 4. Prove that the function  $f(x) = x^n$  is continuous at x = n, where n is a positive integer.
- 5. Find equation of line joining (1, 2) and (3, 6) using determinants.

Answer: 
$$y = 2x$$

6. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.  $\frac{x}{a} + \frac{y}{b} = 1$ 

$$Answer:y^{''}=0$$

# C.B.S.E. Class XII

7. Evaluate : 
$$\int_{0}^{1} \frac{\tan^{-1}x}{1+x^2} dx$$

Answer: 
$$\frac{\pi^2}{32}$$

8. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

Answer:6, 2

9. If a line has direction ratios -18, 12, -4 then what are its direction cosines?

Answer: 
$$< -\frac{9}{11}, \frac{6}{11}, \frac{-2}{11} >$$

10. Consider two points P and Q with position vectors  $\overrightarrow{OP} = 3\vec{a} - 2\vec{b}$  and  $\overrightarrow{OQ} = \vec{a} + \vec{b}$ . Find the position vector of a point R which divides the line joining P and Q in the ratio2: 1 internally,

Answer: 
$$\frac{5\vec{a}}{3}$$

SECTION -B

- 11. Show that the area of parallelogram having diagonals  $3\hat{i} + \hat{j} 2\hat{k}$  and  $\hat{i} 3\hat{j} + 4\hat{k}$  is  $5\sqrt{3}$  sq. units.
- 12. Prove that the equation of the plane making intercepts a, b and c on the coordinate axes is of the form  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ .
- 13. If the sum of the mean and variance of a binomial distribution for 5 trials is 1.8, then find the distribution.

Answer: 
$${}^2C_r \left(\frac{1}{5}\right)^r \left(\frac{4}{5}\right)^{5-r}$$

- 14. If  $\overrightarrow{d} = 5\hat{i} \hat{j} 3\hat{k}$  and  $\overrightarrow{b} = \hat{i} 3\hat{j} 5\hat{k}$ , then show that the vectors  $(\overrightarrow{d} + \overrightarrow{b})$  and  $(\overrightarrow{d} \overrightarrow{b})$  are orthogonal.
- 15. Evaluate the integral :  $\int \sin^4 2x dx$

Answer: 
$$\frac{3}{8}x - \frac{\sin 4x}{8} + \frac{\sin 8x}{64} + C$$

16. Evaluate the integral:  $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$ 

Answer: 
$$\log \frac{4}{3}$$

17. Solve the differential equation :  $\frac{dy}{dx} + y \cot x = 2 \cos x$ .

Answer: 
$$y \sin x = \frac{-\cos 2x}{2} + C$$

18. Using properties of determinants, solve for x.  $\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0$ 

Answer :
$$x = 0, 3a$$
.

19. Find the interval in which the function is increasing and decreasing :  $f(x) = \frac{4x^2 + 1}{x}$ .

Answer: 
$$\left(-\infty, \frac{-1}{2}\right) \cup \left(\frac{1}{2}, \infty\right) \left(\frac{-1}{2}, \frac{1}{2}\right) - (0)$$

20. Find the equations of tangent and the normal to the curve  $x = 1 - \cos \theta$ ,  $y = 6 - \sin \theta$  at  $\theta = \frac{\pi}{4}$ .

Answer: 
$$\left(y - \frac{\pi}{4} + \frac{1}{\sqrt{2}}\right) = \left(\sqrt{2-1}\right)\left(x - 1 + \frac{1}{\sqrt{2}}\right)\left(y - \frac{\pi}{4} + \frac{1}{\sqrt{2}}\right) = \left(\sqrt{2+1}\right)\left(x - 1 + \frac{1}{\sqrt{2}}\right)$$

OR

Find the equations of the tangent and the normal to the curve  $y = x^2 + 4x + 1$  at the point whose x-coordinate is 3.

Answer: x + 10y = 223

21. Differentiate  $\tan^{-1} \left[ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$  w.r.t. x.

Answer: 
$$\frac{-1}{2}$$

OR

Differentiate following with respect to x.  $(x)^{\cos x} + (\sin x)^{\tan x}$ 

Answer: 
$$x^{\cos x} \left( \frac{\cos x}{x} - \sin x \log x \right) + \sin x^{\tan x} (1 + \sec^2 x \log \sin x)$$

22. If  $A = \begin{bmatrix} 3 & 4 \\ -4 & -3 \end{bmatrix}$ , find f(A), if  $f(x) = x^2 - 5x + 7$ 

Answer: 
$$\begin{bmatrix} -15 & -20 \\ 20 & 15 \end{bmatrix}$$

SECTION -C

23. Show that the lines  $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$  and  $\frac{x-4}{5} = \frac{y-1}{2} = z$  intersect. Find the point of intersection.

Answer : 
$$(-1, -1, -1)$$

24. An oil company requires 12000, 20,000 and 15,000 barrels of high grade, medium grade and low grade oil respectively. Refinery A produces 100, 300 and 200 barrels per day of high, medium and low grade oil respectively whereas B produces 200, 400 and 100 barrels per day respectively. If A costs Rs.400 per day and B costs Rs. 300 per day to operate, then how many days should each be run to minimise the cost of requirement?

Answer:

Refinery A = 60 days, Refinery B = 30 days

25. Find the area bounded by the circle  $x^2 + y^2 = 16$  and the line y = x in the first quadrant.

Answer :  $2\pi$  sq. units

26. Show that aright circular cylinder, which is open at the top and has a given surface area, will have the greatest volume, if its height is equal to the radius of its base.

27. There are 3 urns *A*, *B* and *C*. Urn *A* contains 4 red balls and 3 black balls, urn *B* contains 5 red balls and 4 black balls. Um *C* contains 4 red balls and 4 black balls. One ball is drawn Rom each of these ums. What is the probability that the 3 balls drawn consist of 2 red balls and a black ball?

Answer: 
$$\frac{17}{42}$$

28. Evaluate the integral using limits of sums :  $\int_{0}^{2} (x+4) dx$ 

Answer: 10

29. If  $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$ , find  $A^{-1}$ . Using  $A^{-1}$ , solve the system of linear equations : x - 2y = 10, 2x + y + 3z = 8, -2y + z = 7.

Answer: 
$$x = 4$$
,  $y = -3$ ,  $z = 1$ 

\*

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE & SAT

## **Our Mathematics E-Books**

- 1. J.E.E. (Join Entrance Exam)
  - ★ Chapter Tests (Full Syllabus- Fully Solved)
  - ★ Twenty Mock Tests (Full Length Fully Solved)
- 2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
- 3. C.BS.E.
  - ★ Work-Book Class XII (Fully Solved)
  - ★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
  - ★Chapter Test Papers Class XII (Fully Solved)
  - ★ Past Fifteen Years Topicwise Questions (Fully Solved)
  - ★ Sample Papers Class XII (Twenty Papers Fully Solved-includes 2020 solved paper)
  - ★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
- 4. I.C.S.E. & I.S.C.
  - ★Work-Book Class XII (Fully Solved)
  - ★ Chapter Test Papers Class XII (Fully Solved)
  - ★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
  - ★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
- 5. Practice Papers for SAT -I Mathematics (15 Papers Fully Solved)
- 6. SAT II Subject Mathematics (15 Papers Fully Solved)



### **USE E-BOOKS & SAVE ENVIRONMENT WWW.MATHSTUDY.IN**