1. Let $\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a I+b A)^{n}+a^{n} I+n a^{n-1} b A$, where I is the identity matrix of order 2 and $n \in N$.

SOLUTION .:

We have, $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$
For $\mathrm{n}=1,(a I+b A)^{1}+a^{1} I+1 a^{1-1} b A \Rightarrow a l+b A=a l+b A$
So, it is true for $\mathrm{n}=1$ Let us assume that (i) is true for $\mathrm{n}=\mathrm{k}$, i.e., $(a I+b A)^{k}=a^{k} I+k a^{k-1} b A$
Then $(a I+b A)^{k+1}=(a I+b A)^{k}+(a I+b A)=\left(a^{k} I+k a^{k-1} b A\right)(a I+b A)$
$=a^{k+1} I \times I+k a^{k} b A I+a^{k} b A I+k a^{k-1} b^{2} A \cdot A=a^{k+1}+k a^{k} b A+a^{k} b A+k a^{k-1} b^{2} \times O$
$=d^{k+1} I+(k+1) d^{k} b A=a^{k+1} I+(k+1) d^{k+1-1} b A \Rightarrow$ (i) is true for $\mathrm{n}=\mathrm{k}+1$
Hence, by mathematical induction it is true for all $n \in N$.
2. If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, prove that $A^{n}=\left[\begin{array}{ccc}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in N$.

SOLUTION.:

We shall prove it by mathematical induction.
To prove that $\mathrm{n}=1$ is true.
$A^{1}=\left[\begin{array}{lll}3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1}\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=A$
We have, $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right]$
Thus, it is true for $\mathrm{n}=1$. Let us assume that (i) is true for $\mathrm{n}=\mathrm{k}$, i.e., $A^{k}=\left[\begin{array}{lll}3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1}\end{array}\right], k \in N$
Then, $A^{k+1}=A^{k} \cdot A=\left[\begin{array}{lll}3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1}\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
$=\left[\begin{array}{lll}3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} \\ 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} \\ 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1}\end{array}\right]=\left[\begin{array}{lll}3^{k} & 3^{k} & 3^{k} \\ 3^{k} & 3^{k} & 3^{k} \\ 3^{k} & 3^{k} & 3^{k}\end{array}\right]$
\Rightarrow (i) is true for $\mathrm{n}=\mathrm{k}+1$ So, by mathematical induction $A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in N$ is true.
3. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then prove that $A^{n}=\left[\begin{array}{rr}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$, where n is any positive integer.

SOLUTION :

We have, $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ and $A^{n}=\left[\begin{array}{rr}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$.(i) For n $=1, A^{1}=\left[\begin{array}{rr}1+2 \times 1 & -4 \times 1 \\ 1 & 1-2 \times 1\end{array}\right]=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]=A$
So, (i) is true for $\mathrm{n}=1$. Assume that (i) is true for $\mathrm{n}=\mathrm{k}$ i.e., $A^{k}=\left[\begin{array}{rr}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$
Also, $A^{k+1}=\left[\begin{array}{rr}1+2(k+1) & -4(k+1) \\ k+1 & 1-2(k+1)\end{array}\right]$ for $n=k+1 . \Rightarrow A^{k+1}=\left[\begin{array}{rr}2 k+3 & -4 k-4 \\ k+1 & -2 k-1\end{array}\right]$

Now, $A^{k+1}=A \cdot A^{k}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]\left[\begin{array}{rr}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]=\left[\begin{array}{rr}3+6 k-4 k & -12 k-4+8 k \\ 1+k-k & -4 k-1+2 k\end{array}\right]$
$=\left[\begin{array}{rr}2 k+3 & -4 k-4 \\ k+1 & -2 k-1\end{array}\right]=A^{k+1}$
So, (i) is true for $\mathrm{n}=\mathrm{k}+1$. Hence, by mathematical induction $A^{n}=\left[\begin{array}{rr}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$ is true.
4. If A and B are symmetric matrices, prove that $A B-B A$ is a skew symmetric matrix.

SOLUTION .:

Given. : A and B are symmetric matrices, therefore $A^{\prime}=A, B^{\prime}=B$.
To prove : $(\mathrm{AB}-B A)^{\prime}=-(\mathrm{AB}-\mathrm{BA})$
Proof : $(A B-B A)^{\prime}=(A B)^{\prime}-$
$(B A)=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}=B A-A B=-$
$(A B-B A)$
So, $\mathrm{AB}-\mathrm{BA}$ is a skew-symmetric matrix.
5. Show that the matrix $B A B$ is symmetric or skew symmetric according as A is symmetric or skew symmetric.

SOLUTION .:

Case1: Given that A is symmetric. We will prove $B A B$ is symmetric. As A is symmetric, so $A^{\prime}=A$. Now, $\left(B^{\prime} A B\right)^{\prime}=B^{\prime} A^{\prime}\left(B^{\prime}\right)^{\prime}=$ $B^{\prime} A^{\prime} B=B^{\prime} A B$ Thus, $B^{\prime} A B$ is a symmetric matrix.
Case II: Given is skew symmetric, i.e., $A^{\prime}=-\mathrm{A}$. We will prove that $B^{\prime} A B$ is skew symmetric.
Now, $\left(B^{\prime} A B\right)^{\prime}=B^{\prime} A^{\prime}\left(B^{\prime}\right)^{\prime}=B^{\prime} A^{\prime} B$
$=B^{\prime}(-A) B=-B^{\prime} A B$
Hence, $B^{\prime} A B$ is a skew-symmetric matrix.
6. Find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ if the matrix $A=\left[\begin{array}{rrr}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ satisfy the equation $A^{\prime} A=I$.

SOLUTION ::

Given that, matrix $A=\left[\begin{array}{rrr}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ and $A^{\prime} A=I . \Rightarrow\left[\begin{array}{rrr}0 & x & x \\ 2 y & y & -y \\ z & -z & z\end{array}\right]\left[\begin{array}{rrr}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{rrr}0+x^{2}+x^{2} & 0+x y-x y & 0-z x+z x \\ 0+x y-x y & 4 y^{2}+y^{2}+y^{2} & 2 y z-y z-y z \\ 0-z x+x z & 2 y z-z y-z y & z^{2}+z^{2}+z^{2}\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow\left[\begin{array}{rrr}2 x^{2} & 0 & 0 \\ 0 & 6 y^{2} & 0 \\ 0 & 0 & 3 z^{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow 2 x^{2}=1,6 y^{2}=1,3 z^{2}=1 \Rightarrow x^{2}=\frac{1}{2}, y^{2}=\frac{1}{6}, z^{2}=\frac{1}{3}$
Hence, $x= \pm \frac{1}{\sqrt{2}}, y= \pm \frac{1}{\sqrt{6}}, z= \pm \frac{1}{\sqrt{3}}$
7. For what values of x : $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=O$?

SOLUTION.:

$\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=O$
$\Rightarrow\left[\begin{array}{lll}1+4+1 & 2+0+0 & 0+2+0\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=O$
$\Rightarrow\left[\begin{array}{lll}6 & 2 & 4\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=O$
$0+4+4 x=0 \Rightarrow 4(x+1)=0 \Rightarrow x+1=0 \Rightarrow x=-1$.
8. If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, then show that $A^{2}-5 A+7 I=O$.

SOLUTION.:

Given that, $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$
$=\left[\begin{array}{rr}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]$
and $5 A=5\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{rr}15 & 5 \\ -5 & 10\end{array}\right]$
Now, substituting the values, we have $A^{2}-5 A+7 I=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{rr}15 & 5 \\ -5 & 10\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$=\left[\begin{array}{rr}-7 & 0 \\ 0 & -7\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O$
Hence, proved.
9. Find x, if $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 4 \\ 1\end{array}\right]=O$.

SOLUTION .:

$\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 4 \\ 1\end{array}\right]=O$
$\Rightarrow\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{r}x+2 \\ 8+1 \\ 2 x+3\end{array}\right]=O \Rightarrow\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{r}x+2 \\ 9 \\ 2 x+3\end{array}\right]=O$
$\Rightarrow x(x+2)-45-2 x-3=0 \Rightarrow x^{2}-48=0 \Rightarrow x= \pm 4 \sqrt{3}$.
10. A manufacturer produces three products x, y, z which he sells in two markets. Annual sales are indicated as :
(a) If unit sale prices of x, y and z are Rs 2.50 , Rs 1.50 and Rs 1.00 , respectively, find the total revenue in each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are Rs 2.00 , Rs 1.00 and 50 paise respectively. Find the gross profit

SOLUTION .:

Let quantity matrix be $A=\left[\begin{array}{rrr}10000 & 2000 & 18000 \\ 6000 & 20000 & 8000\end{array}\right]$
(a) Selling Price $B=\left[\begin{array}{l}2.50 \\ 1.50 \\ 1.00\end{array}\right]$

Now, Total Selling Price, $A B=\left[\begin{array}{rrr}10000 & 2000 & 18000 \\ 6000 & 20000 & 8000\end{array}\right]\left[\begin{array}{l}2.50 \\ 1.50 \\ 1.00\end{array}\right]$
$=\left[\begin{array}{r}10,000 \times 2.50+2,000 \times 1.50+18,000 \times 1 \\ 6,000 \times 2.50+20,000 \times 1.50+8,000 \times 1\end{array}\right]$
$=\left[\begin{array}{c}25,000+3,000+18,000 \\ 15,000+30,000+8,000\end{array}\right]$
Total revenue in market $\mathrm{I}=$ Rs. 46,000.
Total revenue in market II = Rs. 53,000.
(b) Now, cost price $=\left[\begin{array}{l}2.00 \\ 1.00 \\ 0.50\end{array}\right]$

Total cost price $=\left[\begin{array}{rrr}1000 & 2000 & 18000 \\ 6000 & 20000 & 8000\end{array}\right]\left[\begin{array}{r}2 \\ 1 \\ 0.5\end{array}\right]$
$=\left[\begin{array}{r}10,000 \times 2+2,000 \times 1+18,000 \times 0.5 \\ 6,000 \times 2+20,000 \times 1+8,000 \times 0.5\end{array}\right]$
Total cost price $=31000+36000=$ Rs. 67,000 .
Total selling price $=46000+53000=$ Rs. 99,000
Profit $=$ S.P. - C.P. $=99,000-$
$67,000=$ Rs. $32,000$.
11. Find the matrix X so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$

SOLUTION .:

$X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
We can say that X is a 22 matrix.
Let $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\therefore\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}a+4 b & 2 a+5 b & 3 a+6 b \\ c+4 d & 2 c+5 d & 3 c+6 d\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
$\Rightarrow a+4 b=-7 \ldots$
(i) and $c+4 d=2 \ldots$ (ii)
$2 a+5 b=-8$.
and $2 c+5 d=4$...(iv)
Solving(i) and (iii), we get $\mathrm{a}=1, \mathrm{~b}=-2$ Solving (ii) and (iv), we get $\mathrm{c}=2, \mathrm{~d}=0$
Hence, $X=\left[\begin{array}{rr}1 & -2 \\ 2 & 0\end{array}\right]$
12. If A and B are square matrices of the same order such that $A B=B A$, then prove by induction that $A B n=B n A$. Further, prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in N$.
SOLUTION .: Given $\mathrm{AB}=\mathrm{BA}$,
To prove
(1) $A B^{n}=B^{n} A$ and (2) (AB) $=A^{n} B^{n} \forall n \in N \ldots$...(i) We will prove it by mathematical induction.
(1) Given that $\mathrm{AB}=\mathrm{BA} \ldots$ (ii)

We have to prove $A B^{n}=B^{n} A$ For $\mathrm{n}=1, A B^{1}=B^{1} A \Rightarrow \mathrm{AB}=\mathrm{BA}$, which is true [from (ii)]
Let it be true for $\mathrm{n}=\mathrm{ABm}=\mathrm{BmA}$...(iii)
Then, for $\mathrm{n}=\mathrm{m}+1$,
$A B^{m+1}=A\left(B^{m} B\right)=\left(A B^{m}\right) B=\left(B^{m} A\right) B[$ using (iii) $]=B^{m}(A B)=B^{m}(B A)[$ using (ii) $]=\left(B^{m} B\right) A=B^{m+1} A$. So, it is true for $\mathrm{n}=\mathrm{m}$
$+1$
$\therefore A B^{n}=B^{n} A$.
(2) For $n=1,(A B)^{1}=A^{1} B^{1} \Rightarrow A B=B A$ which is true for $\mathrm{n}=1$ Let (i) be true for a positive integer $\mathrm{n}=\mathrm{m}$. i.e., $(A B)^{m}=A^{m} B^{m}$(iv)
then for $\mathrm{n}=\mathrm{m}+1,(A B)^{m}+1=(A B)^{m}(A B)=\left(A^{m} B^{m}\right)(A B)$ (from (iv))
$=A^{m}\left(B^{m} A\right) B=A^{m}\left(A B^{m}\right) B\left[A B^{n}=B^{n} A\right.$
$\forall n$, whenever $\mathrm{AB}=\mathrm{BA}]$
$=\left(A^{m} A\right)\left(B^{m} B\right)=A^{m}+1 B^{m}+1$ So, it holds for $\mathrm{n}=\mathrm{m}+1$ Hence. $(\mathrm{AB})^{n}-A^{n} B^{n} \forall n \in N$.
Choose the correct answer in the following questions : .
13. If $A=\left[\begin{array}{rr}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is such that $A^{2}=I$, then
(a) $1+\alpha^{2}+\beta \gamma=0$
(b) $1-\alpha^{2}+\beta \gamma=0$
(c) $1-\alpha^{2}-\beta \gamma=0$
(d) $1+\alpha^{2}-\beta \gamma=0$

SOLUTION .:

(C) Given $A=\left[\begin{array}{rr}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$

Now, $A^{2}=I \Rightarrow\left[\begin{array}{rr}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]\left[\begin{array}{rr}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\alpha^{2}+\beta \gamma & \alpha \beta-\alpha \beta \\ \gamma \alpha-\alpha \gamma & \gamma \beta+\alpha^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{rr}\alpha^{2}+\beta \gamma & 0 \\ 0 & \gamma \beta+\alpha^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \alpha^{2}+\beta \gamma=1 \Rightarrow 1-\alpha^{2}-\gamma \beta=0$
14. If the matrix A is both symmetric and skew symmetric, then
(a) A is a diagonal matrix
(b) A is a zero matrix
(c) A is a square matrix
(d) None of these

SOLUTION .:

(B) Consider the matrix A. Clearly, $A^{\prime}=A$ and $A^{\prime}=-\mathrm{A} \therefore \mathrm{A}=-\mathrm{A} \Rightarrow 2 \mathrm{~A}=0 \Rightarrow \mathrm{~A}=0 \therefore \mathrm{~A}$ is a zero matrix.
15. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
(a) A
(b) $I-A$
(c) I
(d) 3 A

SOLUTION.:

(C) We are given that A2 $=\mathrm{A}$ Now, $(I+A)^{3}-7 A=I^{3}+A^{3}+3 I A(I+A)-7 A$
$=I+A^{2}+3 A(I+A)-7 A=I+A^{2}+3 A+3 A^{2}-7 A$
$=I+4 A^{2}-4 A=I+4 A-4 A=I$

www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
3. C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
4. I.C.S.E. \& I.S.C.
\star Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
6. SAT - II Subject Mathematics (15 Papers - Fully Solved)
