Using elementary transformations, find the inverse of each of the matrices, if it exists in questions 1 to 17..

1. $\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$

SOLUTION.:

Let us take $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$ We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$ Applying $R_{2} \rightarrow R_{2}-2 R_{1}\left[\begin{array}{cc}1 & -1 \\ 0 & 5\end{array}\right]=$ $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow \frac{1}{5} R_{2}\left[\begin{array}{cc}0 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{-2}{5} & \frac{1}{5}\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ \frac{-2}{5} & \frac{1}{5}\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ \frac{-2}{5} & \frac{1}{5}\end{array}\right]$
2. $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA}\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$
3. $\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA}$
$\Rightarrow\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-3 R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right]$ A Hence, $A^{-1}=\left[\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right]$
4. $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ -2 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right] A$
Applying $R_{2} \rightarrow-R_{2}\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-2 R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]$
5. $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$ Applying $R_{2} \rightarrow R_{2}-3 R_{1}\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ -3 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right] A$ Hence, $A^{-1}=\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]$
6. $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-2 R_{2}$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$
7. $\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$

SOLUTION.:

Let us take $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$

We know that, $\mathrm{A}=\mathrm{IA}$
$\Rightarrow\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right] A$ Hence, $A^{-1}=\left[\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right]$
8. $\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-3 R_{1}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right]$
9. $\left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right]$

SOLUTION.:

Let us take $\mathrm{A}=\left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right]$ We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{cc}1 & 3 \\ 2 & 7\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-3 R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}7 & -10 \\ -2 & 3\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}7 & -10 \\ -2 & 3\end{array}\right]$
10. $\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$

SOLUTION.:
Let us take $\mathrm{A}=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$ We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+R_{2}\left[\begin{array}{ll}-1 & 1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow-R_{1}\left[\begin{array}{cc}1 & -1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}+4 R_{1}\left[\begin{array}{ll}1 & -1 \\ 0 & -2\end{array}\right]=\left[\begin{array}{ll}-1 & -1 \\ -4 & -3\end{array}\right]=A$

Applying $R_{2} \rightarrow-R_{2}\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 4 & 3\end{array}\right]=A$
Applying $R_{2} \rightarrow \frac{1}{2} R_{2}\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 2 & \frac{3}{2}\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+R_{2}\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right] A$
Hence $A^{-1}=\left[\begin{array}{cc}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
11. $\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$

SOLUTION .:

Let us take $\mathrm{A}=\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{cc}2 & -6 \\ 1 & -2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}\left[\begin{array}{ll}1 & -4 \\ 1 & -2\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{cc}1 & -4 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+2 R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}-1 & 3 \\ -1 & 2\end{array}\right] A$
Applying $R_{2} \rightarrow \frac{1}{2} R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 3 \\ \frac{-1}{2} & 1\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{cc}-1 & 3 \\ \frac{-1}{2} & 1\end{array}\right]$
12. $\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$

SOLUTION .:

Let us take $A=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA}\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+3 R_{2}\left[\begin{array}{cc}0 & 0 \\ -2 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] A$
We have all zeroes in the first row of the left hand side matrix of the above equation. $\therefore A^{-1}$ does not exist.
13. $\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$

SOLUTION.:

Let us take $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$

Applying $R_{1} \rightarrow R_{1}+R_{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}+R_{1}\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+R_{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
14. $\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$

SOLUTION .:

Let us take $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$ We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] A$
We have all zeroes in the second row of the left hand side matrix of the above equation. Therefore, A^{-1} does not exist.
15. $\left[\begin{array}{rrr}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$

SOLUTION .:

Let us take $\mathrm{A}=\left[\begin{array}{rrr}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{rrr}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}$, we get $\left[\begin{array}{rrr}0 & -5 & 0 \\ 2 & 2 & 3 \\ 2 & -2 & 2\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{3} \rightarrow R_{3}-R_{2}$, we get $\left[\begin{array}{rrr}0 & -5 & 0 \\ 2 & 2 & 3 \\ 1 & -4 & -1\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{3}$, we get $\left[\begin{array}{rrr}0 & -5 & 0 \\ 0 & 10 & 5 \\ 1 & -4 & -1\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 3 & -2 \\ 0 & -1 & 1\end{array}\right] A$
Applying $R_{1} \leftrightarrow R_{3}$, we get $\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & 10 & 5 \\ 0 & -5 & 0\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ 0 & 3 & -2 \\ 1 & -1 & 0\end{array}\right] A$
Applying $R_{3} \leftrightarrow R_{2}$, we get $\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & -5 & 0 \\ 0 & 10 & 5\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ 1 & -1 & 0 \\ 0 & 3 & -2\end{array}\right] A$
Applying $R_{3} \rightarrow R_{3}+2 R_{2}$, we get $\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & -5 & 0 \\ 0 & 0 & 5\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -2\end{array}\right] A$
Applying $R_{2} \rightarrow-R_{2}$, we get $\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ -1 & 1 & 0 \\ 2 & 1 & -2\end{array}\right] A$
Applying $R_{2} \rightarrow \frac{1}{5} R_{2}$ and $R_{3} \rightarrow \frac{1}{5} R_{3}$, we get $\left[\begin{array}{rrr}1 & -4 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}0 & -1 & 1 \\ \frac{-1}{5} & \frac{1}{5} & 0 \\ 2 & \frac{1}{5} & \frac{-2}{5}\end{array}\right] A$

Applying $R_{1} \rightarrow R_{1}+4 R_{2}$, we get $\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}-\frac{4}{5} & -\frac{1}{5} & 1 \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & \frac{-2}{5}\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+R_{3}$, we get $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{-2}{5} & 0 & \overline{3} \\ \frac{-1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & \frac{-2}{5}\end{array}\right]$
Hence, $A^{-1}=\left[\begin{array}{ccc}\frac{-2}{5} & 0 & \frac{3}{5} \\ \frac{-1}{5} & \frac{1}{5} & 0 \\ 2 & \frac{1}{5} & \frac{-2}{5}\end{array}\right]$
16. $\left[\begin{array}{rrr}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right]$

SOLUTION.:

Let us take $A=\left[\begin{array}{rrr}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right]$
We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{rrr}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}+3 R_{1}$, we get $\left[\begin{array}{rrr}1 & 3 & -2 \\ 0 & 9 & -11 \\ 2 & 5 & 0\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{3} \rightarrow R_{3}-2 R_{1}$, we get $\left[\begin{array}{rrr}1 & 3 & -2 \\ 0 & 9 & -11 \\ 0 & -1 & 4\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}+3 R_{3}$, wet get $\left[\begin{array}{rrr}1 & 0 & 10 \\ 0 & 9 & -11 \\ 0 & -1 & 4\end{array}\right]=\left[\begin{array}{rrr}-5 & 0 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1\end{array}\right] A$
Interchanging R_{2} and R_{3} we get $\left[\begin{array}{rrr}1 & 0 & 10 \\ 0 & -1 & 4 \\ 0 & 9 & -11\end{array}\right]=\left[\begin{array}{rrr}-5 & 0 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0\end{array}\right] A$
Applying $R_{3} \rightarrow R_{3}+9 R_{2}$, we get $\left[\begin{array}{rrr}1 & 0 & 10 \\ 0 & -1 & 4 \\ 0 & 0 & 25\end{array}\right]=\left[\begin{array}{rrr}-5 & 0 & 3 \\ -2 & 0 & 1 \\ -15 & 1 & 9\end{array}\right] A$
Applying $R_{2} \rightarrow-R_{2}$, we get $\left[\begin{array}{rrr}1 & 0 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 25\end{array}\right]=\left[\begin{array}{rrr}-5 & 0 & 3 \\ 2 & 0 & -1 \\ -15 & 1 & 9\end{array}\right] A$
Applying $R_{3} \rightarrow \frac{1}{25} R_{3}$, we get $\left[\begin{array}{rrr}1 & 0 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rcc}-5 & 0 & 3 \\ 2 & 0 & -1 \\ \frac{-15}{25} & \frac{1}{25} & \frac{9}{25}\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-10 R_{3}$, we get $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & \frac{-2}{5} & \frac{-3}{5} \\ 2 & 0 & -1 \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25}\end{array}\right] A$

Applying $R_{2} \rightarrow R_{2}+4 R_{3}$, we get $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & \frac{-2}{5} & \frac{-3}{5} \\ \frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25}\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{ccc}1 & \frac{-2}{5} & \frac{-3}{5} \\ \frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25}\end{array}\right]$
17. $\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$

SOLUTION.:

Let us take $\mathrm{A}=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$ We know that, $\mathrm{A}=\mathrm{IA} \Rightarrow\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Interchanging R_{1} and R_{2}, we get
$\left[\begin{array}{rrr}5 & 1 & 0 \\ 2 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-2 R_{2}$,we get $\left[\begin{array}{rrr}1 & 1 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{rrr}-2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}$,we get $\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{rrr}-2 & 1 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow-R_{2}$, we get $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 5 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{rrr}-2 & 1 & 0 \\ -5 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-R_{3}$,we get $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{rrr}-2 & 1 & 0 \\ -5 & 2 & -1 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-R_{2}$,we get $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{rrr}3 & -1 & 1 \\ -5 & 2 & -1 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{3} \leftrightarrow R_{3}-R_{2}$,we get $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}3 & -1 & 1 \\ -5 & 2 & -1 \\ 5 & -2 & 2\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{3}$,we get $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right] A$
Hence, $A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$
18. Matrices A and B will be inverse of each other only if
(a) $A B=B A$
(b) $A B=B A=0$
(c) $A B=0, B A=I$
(d) $A B=B A=I$
(D) Matrices A and B will be inverse of each other only if, $\mathrm{AB}=\mathrm{BA}-1$.

www.mathstudy.in

Our Mathematics E-Books

1. J.E.E. (Join Entrance Exam)
\star Chapter Tests (Full Syllabus- Fully Solved)
\star Twenty Mock Tests (Full Length - Fully Solved)
2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
3. C.BS.E.
\star Work-Book Class XII (Fully Solved)
\star Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Past Fifteen Years Topicwise Questions (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solvedincludes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
4. I.C.S.E. \& I.S.C.
\star Work-Book Class XII (Fully Solved)
\star Chapter Test Papers Class XII (Fully Solved)
\star Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
\star Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
5. Practice Papers for SAT -I Mathematics (15 Papers - Fully Solved)
6. SAT - II Subject Mathematics (15 Papers - Fully Solved)
