Using elementary transformations, find the inverse of each of the matrices, if it exists in questions 1 to 17...

$$1. \left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array} \right]$$

SOLUTION .:

Let us take
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 We know that, $A = IA \Rightarrow \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Applying $R_2 \rightarrow R_2 - 2R_1 \begin{bmatrix} 1 & -1 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$

Applying
$$R_2 \to \frac{1}{5}R_2 \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & \frac{1}{5} \end{bmatrix} A$$

Applying
$$R_1 o R_1 + R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{bmatrix} A$$

Hence,
$$A^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{bmatrix}$$

$$2. \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

SOLUTION .:

Let us take
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

We know that,
$$A = IA \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} A$$

Hence,
$$A^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$3. \left[\begin{array}{cc} 1 & 3 \\ 2 & 7 \end{array} \right]$$

Let us take
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$

We know that,
$$A = IA$$

$$\Rightarrow \left[\begin{array}{cc} 1 & 3 \\ 2 & 7 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] A$$

Applying
$$R_2 \to R_2 - 2R_1 \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - 3R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} A$$
 Hence, $A^{-1} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}$

$$4. \left[\begin{array}{cc} 2 & 3 \\ 5 & 7 \end{array} \right]$$

Let us take
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - 2R_1 \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} A$$

Applying
$$R_2 \to -R_2 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 5 & -2 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - 2R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} A$$

Hence,
$$A^{-1} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$$

$$5. \left[\begin{array}{cc} 2 & 1 \\ 7 & 4 \end{array} \right]$$

SOLUTION .:

Let us take
$$A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$
 Applying $R_2 \to R_2 - 3R_1 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} A$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} A$$
 Hence, $A^{-1} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}$

$$6. \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

SOLUTION

Let us take
$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
 We know that, $A = IA \Rightarrow \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Applying
$$R_1 \rightarrow R_1 - R_2 \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} A$$

Applying
$$R_1 \rightarrow R_1 - 2R_2$$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 3 & -5 \\ -1 & 2 \end{array}\right] A$$

Hence,
$$A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$

7.
$$\left[\begin{array}{cc} 3 & 1 \\ 5 & 2 \end{array} \right]$$

Let us take
$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

We know that, A = IA

$$\Rightarrow \left[\begin{array}{cc} 3 & 1 \\ 5 & 2 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] A$$

Applying
$$R_2 \to R_2 - R_1 \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - 2R_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} A$$
 Hence, $A^{-1} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$

$$8. \left[\begin{array}{cc} 4 & 5 \\ 3 & 4 \end{array} \right]$$

SOLUTION .:

Let us take
$$A = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - 3R_1 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix} A$$

Hence,
$$A^{-1} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}$$

9.
$$\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$

SOLUTION .:

Let us take
$$A = \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$
 We know that, $A = IA \Rightarrow \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - 2R_1 \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - 3R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix} A$$

Hence,
$$A^{-1} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix}$$

10.
$$\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$$

Let us take
$$A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$$
 We know that, $A = IA \Rightarrow \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Applying
$$R_1 \to R_1 + R_2 \begin{bmatrix} -1 & 1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to -R_1 \begin{bmatrix} 1 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 + 4R_1 \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -4 & -3 \end{bmatrix} = A$$

Applying
$$R_2 \to -R_2 \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} = A$$

Applying
$$R_2 \to \frac{1}{2}R_2 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 2 & \frac{3}{2} \end{bmatrix} A$$

Applying
$$R_1 \to R_1 + R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{bmatrix} A$$

Hence
$$A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} \\ & \frac{3}{2} \end{bmatrix}$$

11.
$$\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$

Let us take
$$A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - R_2 \begin{bmatrix} 1 & -4 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & -4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 + 2R_2 \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ -1 & 2 \end{bmatrix} A$$

Applying
$$R_2 \to \frac{1}{2}R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ \frac{-1}{2} & 1 \end{bmatrix} A$$

Hence,
$$A^{-1} = \begin{bmatrix} -1 & 3 \\ -1 & 1 \end{bmatrix}$$

12.
$$\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$
SOLUTION .:
Let us take $A = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$

We know that,
$$A = IA \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 + 3R_2 \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A$$

We have all zeroes in the first row of the left hand side matrix of the above equation. A^{-1} does not exist.

13.
$$\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Let us take
$$A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 + R_2 \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$$

Applying $R_2 \to R_2 + R_1 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} A$

Applying $R_1 \to R_1 + R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} A$

Hence, $A^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$

14.
$$\left[\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array}\right]$$

Let us take
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$
 We know that, $A = IA \Rightarrow \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$
Applying $R_2 \to R_2 - 2R_1 \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$

We have all zeroes in the second row of the left hand side matrix of the above equation. Therefore, A^{-1} does not exist.

15.
$$\begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$$

Let us take
$$A = \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$
Applying $R_1 \to R_1 - R_2$, we get $\begin{bmatrix} 0 & -5 & 0 \\ 2 & 2 & 3 \\ 2 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_3 \to R_3 - R_2$$
, we get $\begin{bmatrix} 0 & -5 & 0 \\ 2 & 2 & 3 \\ 1 & -4 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} A$

Applying
$$R_2 \to R_2 - 2R_3$$
, we get $\begin{bmatrix} 0 & -5 & 0 \\ 0 & 10 & 5 \\ 1 & -4 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 3 & -2 \\ 0 & -1 & 1 \end{bmatrix} A$

Applying
$$R_1 \leftrightarrow R_3$$
, we get $\begin{bmatrix} 1 & -4 & -1 \\ 0 & 10 & 5 \\ 0 & -5 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 3 & -2 \\ 1 & -1 & 0 \end{bmatrix} A$

Applying
$$R_3 \leftrightarrow R_2$$
, we get $\begin{bmatrix} 1 & -4 & -1 \\ 0 & -5 & 0 \\ 0 & 10 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & -1 & 0 \\ 0 & 3 & -2 \end{bmatrix} A$

Applying
$$R_3 \to R_3 + 2R_2$$
, we get $\begin{bmatrix} 1 & -4 & -1 \\ 0 & -5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -2 \end{bmatrix} A$

Applying
$$R_2 \to -R_2$$
, we get $\begin{bmatrix} 1 & -4 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 2 & 1 & -2 \end{bmatrix} A$

Applying
$$R_2 \to \frac{1}{5}R_2$$
 and $R_3 \to \frac{1}{5}R_3$, we get $\begin{bmatrix} 1 & -4 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & \frac{-2}{5} \end{bmatrix} A$

Applying
$$R_1 \to R_1 + 4R_2$$
, we get $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{4}{5} & -\frac{1}{5} & 1 \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & \frac{-2}{5} \end{bmatrix} A$

Applying
$$R_1 \to R_1 + R_3$$
, we get $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{-2}{5} & 0 & \frac{3}{5} \\ \frac{-1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & \frac{-2}{5} \end{bmatrix}$

Hence,
$$A^{-1} = \begin{bmatrix} \frac{-2}{5} & 0 & \frac{3}{5} \\ \frac{-1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & \frac{-2}{5} \end{bmatrix}$$

$$\begin{array}{c|cccc}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}$$

SOLUTION.

Let us take A =
$$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$

We know that,
$$A = IA \Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Applying
$$R_2 \to R_2 + 3R_1$$
, we get $\begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -11 \\ 2 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_3 \to R_3 - 2R_1$$
, we get $\begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -11 \\ 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$

Applying
$$R_1 \to R_1 + 3R_3$$
, wet get $\begin{bmatrix} 1 & 0 & 10 \\ 0 & 9 & -11 \\ 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$

Interchanging
$$R_2$$
 and R_3 we get
$$\begin{bmatrix} 1 & 0 & 10 \\ 0 & -1 & 4 \\ 0 & 9 & -11 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix} A$$

$$\begin{bmatrix} 0 & 9 & -11 \end{bmatrix} \begin{bmatrix} 3 & 1 & 0 \end{bmatrix}$$
Applying $R_3 \to R_3 + 9R_2$, we get
$$\begin{bmatrix} 1 & 0 & 10 \\ 0 & -1 & 4 \\ 0 & 0 & 25 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ -2 & 0 & 1 \\ -15 & 1 & 9 \end{bmatrix} A$$

Applying
$$R_2 \to -R_2$$
, we get $\begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 25 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ 2 & 0 & -1 \\ -15 & 1 & 9 \end{bmatrix} A$

Applying
$$R_3 \to \frac{1}{25}R_3$$
, we get $\begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ 2 & 0 & -1 \\ -15 & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$

Applying
$$R_1 \to R_1 - 10R_3$$
, we get $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{-2}{5} & \frac{-3}{5} \\ 2 & 0 & -1 \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$

Applying
$$R_2 \to R_2 + 4R_3$$
, we get $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{-2}{5} & \frac{-3}{5} \\ \frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$

Hence,
$$A^{-1} = \begin{bmatrix} 1 & \frac{-2}{5} & \frac{-3}{5} \\ \frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix}$$

17.
$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

Let us take
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
 We know that, $A = IA \Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Interchanging R_1 and R_2 , we get

$$\begin{bmatrix} 5 & 1 & 0 \\ 2 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Applying
$$R_1 \to R_1 - 2R_2$$
, we get $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_2 \to R_2 - 2R_1$$
, we get $\begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_2 \to -R_2$$
, we get $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 5 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ -5 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_2 \to R_2 - R_3$$
, we get $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ -5 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_1 \to R_1 - R_2$$
, we get $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -5 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix} A$

Applying
$$R_3 \to R_3 - R_2$$
, we get $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -5 & 2 & -1 \\ 5 & -2 & 2 \end{bmatrix} A$

Applying
$$R_2 \to R_2 - 2R_3$$
, we get $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} A$

Hence,
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

18. Matrices A and B will be inverse of each other only if

(a)
$$AB = BA$$

(b)
$$AB = BA = 0$$

(c)
$$AB = 0, BA = I$$

(d)
$$AB = BA = I$$

(D) Matrices A and B will be inverse of each other only if, AB = BA - 1.

Download Best E-Books on Mathematics For C.B.S.E, I.S.C., I.C.S.E., JEE & SAT

www.mathstudy.in

Our Mathematics E-Books

- 1. J.E.E. (Join Entrance Exam)
 - ★ Chapter Tests (Full Syllabus- Fully Solved)
 - ★ Twenty Mock Tests (Full Length Fully Solved)
- 2. B.I.T.S.A.T. Twenty Mock Tests (Fully Solved)
- 3. C.BS.E.
 - ★ Work-Book Class XII (Fully Solved)
 - ★ Objective Type Questions Bank C.B.S.E. Class XII (Fully Solved)
 - ★Chapter Test Papers Class XII (Fully Solved)
 - ★ Past Fifteen Years Topicwise Questions (Fully Solved)
 - ★ Sample Papers Class XII (Twenty Papers Fully Solved-includes 2020 solved paper)
 - ★ Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
- 4. I.C.S.E. & I.S.C.
 - ★Work-Book Class XII (Fully Solved)
 - ★ Chapter Test Papers Class XII (Fully Solved)
 - ★ Sample Papers Class XII (Twenty Papers Fully Solved -includes 2020 solved paper)
 - \bigstar Sample Papers Class X (Twenty Papers Fully Solved -includes 2020 solved paper)
- 5. Practice Papers for SAT -I Mathematics (15 Papers Fully Solved)
- 6. SAT II Subject Mathematics (15 Papers Fully Solved)

