Very Short Answer Questions (1 Mark Each)

Find the product of the following matrices

1. $\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
2. $\left(\begin{array}{cc}-1 & 5 \\ 2 & 3\end{array}\right) \cdot\left(\begin{array}{cc}4 & -2 \\ 0 & 1\end{array}\right)$
3. $\left(\begin{array}{cc}3 & 4 \\ 1 & -1\end{array}\right) \cdot\left(\begin{array}{cc}-2 & 5 \\ 4 & 3\end{array}\right)$
4. $\left(\begin{array}{cc}6 & -3 \\ 2 & 4\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
5. $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \cdot\left(\begin{array}{cc}7 & -6 \\ 5 & 4\end{array}\right)$
6. $\left(\begin{array}{cc}-4 & 2 \\ 3 & 5\end{array}\right) \cdot\left(\begin{array}{cc}2 & -1 \\ -3 & 4\end{array}\right)$
7. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \cdot\left(\begin{array}{ll}-1 & -2 \\ -3 & -4\end{array}\right)$
8. $\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right) \cdot\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
9. $\left(\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right) \cdot\left(\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right)$
10. $\left(\begin{array}{ll}3 & -3 \\ 2 & -2\end{array}\right) \cdot\left(\begin{array}{ll}-2 & 2 \\ -1 & 1\end{array}\right)$

Short Answer Questions (2 Marks Each)
11. Given $A=\left(\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}3 & -4 \\ 2 & 1\end{array}\right)$, find $A \cdot B$.
12. If $X=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ and $Y=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$, and $X \cdot Y=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, find X.
13. Compute the product of $\left(\begin{array}{cc}4 & -2 \\ 2 & 1\end{array}\right)$ and $\left(\begin{array}{cc}-1 & 3 \\ 4 & -2\end{array}\right)$.
14. Find the result of multiplying $\left(\begin{array}{cc}-3 & 6 \\ 2 & -4\end{array}\right)$ by $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
15. Calculate the product of two matrices $P=\left(\begin{array}{ll}5 & 3 \\ 2 & 4\end{array}\right)$ and $Q=\left(\begin{array}{cc}-2 & 0 \\ 1 & -1\end{array}\right)$.

Long Answer Questions (4 Marks Each)

16. For matrices $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $N=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$, given that $M \cdot N=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find the values of a, b, c, d, e, f, g, and h assuming they are integers and M and N are inverses of each other.
17. Given $C=\left(\begin{array}{ll}x & 3 \\ 4 & y\end{array}\right)$ and $D=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$, if the product $C \cdot D=\left(\begin{array}{cc}5 & x \\ y & 10\end{array}\right)$, find x and y.
18. If $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \cdot\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=\left(\begin{array}{cc}7 & 10 \\ 15 & 22\end{array}\right)$, determine the values of p, q, r, and s.

By: Sachin Sharmaa : Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

Answers

1. $\left(\begin{array}{cc}11 & 14 \\ 4 & 8\end{array}\right)$
2. $\left(\begin{array}{cc}-1 & 3 \\ 6 & 3\end{array}\right)$
3. $\left(\begin{array}{cc}-14 & 17 \\ 2 & 1\end{array}\right)$
4. $\left(\begin{array}{ll}6 & 6 \\ 2 & 4\end{array}\right)$
5. $\left(\begin{array}{cc}5 & 4 \\ -1 & 4\end{array}\right)$
6. $\left(\begin{array}{cc}8 & -14 \\ -3 & 5\end{array}\right)$
7. $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ (This assumes x, y, z, w are such that the product with Y zeroes out; this could be a trick question as it implies a certain dependency between x, y, z, w which typically results in $x=y=z=w=0$ under the given conditions, but more solutions could exist depending on interpretation.)
8. $\left(\begin{array}{cc}0 & 12 \\ 10 & -6\end{array}\right)$
9. $\left(\begin{array}{cc}-9 & 18 \\ 8 & -14\end{array}\right)$
10. $\left(\begin{array}{cc}-5 & -15 \\ 2 & -8\end{array}\right)$
11. $\left(\begin{array}{cc}10 & -2 \\ 4 & 2\end{array}\right)$
12. $a=1, b=0, c=0, d=1, e=1, f=0, g=0, h=1$ (This is one of the possible sets of values for the inverse scenario, assuming a simplistic case where M and N are identity matrices.)
13. $x=3, y=8$
14. $p=1, q=2, r=3, s=4$
