Matrices Class XII

1. Given matrices
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 1 & 1 & 2 \end{pmatrix}$$
, and $B = \begin{pmatrix} 9 & 8 & 7 \\ 3 & 2 & 1 \end{pmatrix}$, calculate $A + B$.
2. If $C = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$, find 2*C*.
3. Determine the product of $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
4. What is the transpose of $M = \begin{pmatrix} 0 & 1 & 2 \\ 6 & 7 & 8 \end{pmatrix}$?
5. Is the matrix $S = \begin{pmatrix} 0 & 1 & -1 \\ -1 & -1 & 0 \end{pmatrix}$ symmetric, skew-symmetric, or neither? Justify your answer.
6. Given $Z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, explain the significance of matrices Z and I in matrix operations.
7. Prove that matrix multiplication is not commutative using $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 8 \\ 7 & 8 & 9 \end{pmatrix}$ and $B = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}$.
8. Show that there exist non-zero 2×2 matrices X and Y such that $XY = Z$, where Z is the zero matrix. Extend this concept to 3×3 matrices.
9. Find the inverse of $P = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$, if it exists.
10. Explain the concept of an identity matrix using $3 \cdot 3$ thatrices as examples.
11. Calculate $AB - BA$ for $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$, and $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.
12. Given $A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 2 & 1 \end{pmatrix}$, endermine if A is invertible.
13. For $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \\ 5 & 6 & 0 \end{pmatrix}$, compute $A^T A$.
14. If $A = \begin{pmatrix} d & b & c \\ d & b & c \\ X & h & f \end{pmatrix}$ and $A^T = A$, find the conditions on $a, b, c, d, c, f, g, h, i$.
15. Show that the matrix $M = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$. Use this to explain why A is not invertible.
16. Calculate the determinant of $A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$. Use this to explain why A is not invertible.
17. Given $A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{pmatrix}$, weitry that AB is not equal to BA .
By: Such Sharrma : Boundout Muthermatics: F-Books for C.B.S.F. / LC.S.F. / L.S.C. / JEE from www.mathstudy.in

18. If
$$X = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
, is X symmetric? Why?

19. For the matrix $M = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 1 & 2 & 2 \end{pmatrix}$, determine if *M* is symmetric or skew-symmetric.

20. Calculate the product of $A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 1 & 2 \\ 3 & 5 & 7 \end{pmatrix}$ and its transpose.

21. Explain why the zero matrix does not have an inverse.

22. Given
$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$
, find A^{-1} if possible.

Answers

- 5. The matrix S is skew-symmetric because $S^T = -S$.
- 6. The zero matrix Z serves as the additive identity in matrix operations, while the identity matrix I serves as the multiplicative identity.
- 7. To prove non-commutativity, we calculate AB and BA and show they are different: $AB \neq BA$.
- 8. For 2×2 matrices, example matrices $X = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ and $Y = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$ have XY = Z. This concept extends to 3×3 matrices with similar properties.
- 9. $P^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$
- 10. An identity matrix is a square matrix in which all the elements of the principal diagonal are ones and all other elements are zeros.

For
$$3 \times 3$$
, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
11. $AB - BA = \begin{pmatrix} -4 & 6 & -6 \\ -10 & 0 & 10 \\ 4 & -6 & 6 \end{pmatrix}$

12. To determine if A is invertible, we calculate its determinant. Since det(A) $\neq 0$, A is invertible.

13.
$$A^T A = \begin{pmatrix} 26 & 32 & 10 \\ 32 & 41 & 16 \\ 10 & 16 & 25 \end{pmatrix}$$

- 14. For A to be symmetric, a, e, i are arbitrary real numbers, and b = d, c = g, f = h.
- 15. M does not have an inverse because its determinant is 0, indicating it is singular.
- 16. The determinant of A is 0, which means A is not invertible.
- 17. Calculating AB and BA shows that they are indeed different, verifying that matrix multiplication is not commutative.
- 18. Yes, X is symmetric because $X = X^T$.
- 19. *M* is neither symmetric nor skew-symmetric because $M \neq M^T$ and $M \neq -M^T$.
- 20. The product of A and its transpose is a symmetric matrix.
- 21. The zero matrix does not have an inverse because there is no matrix that, when multiplied by the zero matrix, yields the identity matrix.
- 22. The inverse of A does not exist because its determinant is 0, indicating it is singular.

By: Sachin Sharmaa : Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in