MULTIPLE CHOICE TYPE QUESTIONS

- 1. The rate of change of the area of a circle with respect to its radius r when r = 3 cm is
 - (a) $3\pi \text{cm}^2/\text{cm}$
 - (b) $2\pi \text{cm}^2/\text{cm}$
 - (c) $6\pi \text{cm}^2/\text{cm}$
 - (d) $4\pi \text{cm}^2/\text{cm}$

SOLUTION

- (c) Let $A = \pi r^2 \dots (1)$ (where A denotes the area of the circle when its radius is r) Differentiating (1), w.r.t. r, we get $= \frac{dA}{dr} = \pi (2r) = 2\pi r \left(\frac{dA}{dr}\right)_{r=3\text{cm}} = 2\pi (3)\text{cm} = 6\pi\text{cm}^2/\text{cm}$
- 2. The restriction on n, k and p if X, Y,Z,W,P are matrices having order, $X_{2\times n}, Y_{3\times k}, Z_{2\times p}, W_{n\times 3}, P_{p\times k}$, so that PY + WY will be defined are \cdots
 - (a) k = 3, p = n
 - (b) k is arbitrary, p = 2
 - (c) p is arbitrary, k = 3
 - (d) k = 2, p = 3

SOLUTION

(a) Given : $X_{2\times n}, Y_{3\times k}, Z_{2\times p}, W_{n\times 3}, P_{p\times k}$ Now, $PY + WY = P_{p\times k} \times Y_{3\times k} + Q_{n\times 3} \times Y_{3\times k}$ Clearly, k = 3 and p = n

- 3. The planes: 2x y + 4z = 5 and 5x 2.5y + 10z = 6 are
 - (a) Perpendicular
 - (b) Parallel
 - (c) Intersect y-axis
 - (d) Pass through $\left(0,0,\frac{5}{4}\right)$

SOLUTION

(b) : The direction ratios of planes are < 2, -1, 4 > and < 5, -2.5, 10 > Here, $\frac{2}{5} = \frac{-1}{-2.5} = \frac{4}{10}$ which is true. \therefore The given planes are parallel.

4. If
$$\frac{d}{dx}f(x) = 4x^2 - \frac{3}{x^4}$$
, such that $f(2) = 0$ then, $f(x)$ is
(a) $x^4 + \frac{1}{x^3} - \frac{129}{8}$
(b) $x^3 + \frac{1}{x^4} + \frac{129}{8}$
(c) $x^4 + \frac{1}{x^3} + \frac{129}{8}$
(d) $x^3 + \frac{1}{x^4} - \frac{129}{8}$

DOWNLOAD MATHEMATICS OBJECTIVE TYPE QUESTION BANK CLASS XII C.B.S.E. from www.mathstudy.in

Mock Test - Objective Type Questions

SOLUTION

(a)
$$f(x) = \int \left(4x^3 - \frac{3}{x^4}\right) dx = 4 \int x^3 dx - 3 \int x^{-4} dx = \frac{4x^4}{4} - \frac{3x^{-3}}{-3} + C = x^4 + \frac{1}{x^3} + C \therefore f(2) = (2)^4 + \frac{1}{(2)^3} + C = 0 \Rightarrow C = -16 - \frac{1}{8} = -\frac{129}{8} \therefore f(x) = x^4 + \frac{1}{x^3} - \frac{129}{8}$$

Stud

- 5. On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x 1$ strictly decreasing?
 - (a) (0,1)(b) $\left(\frac{\pi}{2},\pi\right)$ (c) $\left(0,\frac{\pi}{2}\right)$
 - (d) None of these

SOLUTION

(d) We have, $f(x) = x^{100} + \sin x - 1 \dots$ (i) Differentiating (i) w.r.t. x, we get $f'(x) = 100x^{99} + \cos x$ (A f'(x) assumes only +ve values in $(0,1) \therefore f$ is strictly increasing in (0,1) (B) f'(x) > 0 for all $x \in \left(\frac{\pi}{2}, \pi\right)$, therefore f is strictly increasing in $x \in \left(\frac{\pi}{2}, \pi\right)$

(C) f'(x) > 0 for all $x \in \left(0, \frac{\pi}{2}\right)$, therefore f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

7. If n = p, X and Z are matrices having order, $X_{2 \times n}, Z_{2 \times p}$ then the order of the matrix 7X-5Z is

(a) $p \times 2$

- (b) $2 \times n$
- (c) $n \times 3$
- (d) $p \times n$

SOLUTION

(B) $7X - 5Z = 7X_{2 \times n} - 5Z_{2 \times p}$ We can add two matrices if their order is same. n = p. Order of 7X - 5Z is $2 \times n$.

SOLUTION $sin^{-1}x + sin^{-1}y = \frac{\pi}{2}$ FROM WWW. Inathether $\Rightarrow sin^{-1}x = \frac{\pi}{2} - sin^{-1}y$ $\Rightarrow sin^{-1}x = cos^{-1}y$ $\Rightarrow y = \sqrt{1 - x^2}$ On differentiating both sides : $\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}}(-2x) = -\frac{x}{y}$ 11. If $P(A) = \frac{4}{5}$ and $P(A \cap B) = \frac{7}{10}$ then P(B/A) is equal to (a) $\frac{1}{8}$ (b) $\frac{7}{8}$ (c) $\frac{7}{9}$ (d) $\frac{1}{7}$ SOLUTION $\mathbf{P}(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{7/10}{4/5} = \frac{7}{8}$ 12. If $y = \sqrt{sinx + \sqrt{sinx + \sqrt{sinx \dots \infty}}}$ then $\frac{dy}{dx}$ is equal to (a) $\frac{cosx}{2y - 1}$ E.Bor (a) $\frac{1}{2y-1}$ (b) $\frac{2cosx}{2y+1}$ (c) $3\frac{2cosx}{2y+1}$ (d) $\frac{3cosx}{2y+1}$ **SOLUTION** $y = \sqrt{\sin x} + \sqrt{\sin x} + \sqrt{\sin x \cdots \infty}$ $y = \sqrt{sinx + y}$ Squaring both sides we get : $y^2 = sinx + y$ Differentiating both sides we get : $2y\frac{dy}{dx} = \cos x + \frac{dy}{Dx}$ $\Rightarrow \frac{dy}{dx} = \frac{\cos x}{2y - 1}$

∛ VERY SHORT ANSWER QUESTIONS

Mock Test - Objective Type Questions

13. Find the equation of the plane that pass through three points (1,1,0), (1,2,1), (-2,2,-1)

SOLUTION

Any plane through (1,1,0) is a(x-1)+b(y-1)+cz = 0 ...(1) Since the plane passes through the points (1,2,1) and (-2,2,-1) $\therefore a(1-1)+b(2-1)+c(1) = 0$ and $a(-2-1)+b(2-1)+c(-1) = 0 \Rightarrow b+c = 0$ (2) and -3a+b-c = 0(3) Solving (2) and (3), $\frac{a}{-1-1} = \frac{b}{-3+0} = \frac{c}{0+3} \Rightarrow \frac{a}{-2} = \frac{b}{-3} = \frac{c}{3} = k$ (say), where $k \neq 0$ $\therefore a = -2k, b = -3k, c = 3k$ Putting these values of a, b, c in (1), we get $-2k(x-1) - 3k(y-1) + 3kz = 0 \Rightarrow -2(x-1) - 3(y-1) + 3z = 0 \Rightarrow -2x + 2 - 3y + 3 + 3z = 0 \Rightarrow 2x + 3y - 3z = 5$, which is the required equation.

14. Find the value of x, y and z so that the vectors $a = 3\hat{i} + 4\hat{j} - z\hat{k}$ and $b = x\hat{i} + y\hat{j} + 2\hat{k}$ are equal.

SOLUTION

.. Note that two vectors are equal if and only if their corresponding components are equal. Thus, the given vectors \vec{a} and \vec{b} will be equal if and only if x = 3, y = 4, z = -2.

15. Prove that the function $f(x) = x^n$ is continuous at x = n, where n is a positive integer.

SOLUTION

Given, $f(x) = x^n$, $n \in N$ So, f (x) is a polynomial function and domain of f is R. $\lim_{x \to n} f(x) = \lim_{x \to n} x^n = x^n = f(n) \Rightarrow f$ is continuous at $n \in \mathbb{N}$.

300KS from

16. Evaluate : $tan^{-1}\sqrt{3} - sec^{-1}(-2)$

SOLUTION

$$\overline{\tan^{-1}\sqrt{3} - \sec^{-1}(-2)}$$

= $\tan^{-1}(\tan\frac{\pi}{3}) - \sec^{-1}(-\sec\frac{\pi}{3})$
= $\frac{\pi}{3} - \sec^{-1}[\sec(\pi - \frac{\pi}{3})]$
= $\frac{\pi}{3} - \sec^{-1}[\sec(\pi - \frac{\pi}{3})]$
= $\frac{\pi}{3} - \sec^{-1}(\sec\frac{2\pi}{3})$
= $\frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$

17. Evaluate $tan(tan^{-1}(-4))$

SOLUTION

 $tan(tan^{-1}(-4)) = -4 [::tan(tan^{-1}x) = x; x \in R)]$

18. Find the value of $sin^{-1}(cos(\frac{43\pi}{5}))$

SOLUTION

$$sin^{-1}(cos(\frac{43\pi}{5}))$$

$$= sin^{-1}(cos(8\pi + \frac{3\pi}{5}))$$

$$= sin^{-1}(cos\frac{3\pi}{5})$$

$$= sin^{-1}(sin(\frac{\pi}{2} - \frac{3\pi}{5}))$$

$$= sin^{-1}(sin(\frac{-\pi}{10}))$$

$$= -\frac{\pi}{10}$$

DOWNLOAD MATHEMATICS OBJECTIVE TYPE QUESTION BANK CLASS XII C.B.S.E. from www.mathstudy.in

19. Evaluate
$$\int (e^{z\log a} + e^{z\log a} + e^{z\log a}) dx$$

SOLUTION
 $I = \int (e^{z\log a} + e^{z\log a} + e^{z\log a}) dx = \int (e^{\log a^{2}} + e^{\log a^{2}} + e^{\log a^{2}}) dx = \int (a^{2} + x^{a} + a^{a}) dx = \frac{a^{2}}{\log a} + \frac{x^{a+1}}{a+1} + a^{a}x + C$
20. Find the intercepts cut off by the plane2x + y - z = 5.
SOLUTION
The given equation of the plane is2x + y - z = 5. $\Rightarrow \frac{x}{5/2} + \frac{y}{5} + \frac{z}{-5} = 1$ Comparing it with $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, we get the intercepts on the axes as $\frac{5}{2}$, 5 and -5.
21. $\int \frac{2^{2} + 3^{2}}{5^{2}} dx$
SOLUTION
 $1 \text{ tet } I = \int \frac{2^{2} + 3^{2}}{5^{2}} dx \Rightarrow I = \int \frac{2^{2}}{5^{2}} dx + \int \frac{3^{3}}{5^{2}} dx = \int \left(\frac{2}{5}\right)^{x} dx + \int \left(\frac{3}{5}\right)^{x} dx \Rightarrow I = \frac{\left(\frac{2}{5}\right)^{x}}{\log_{2}\left(\frac{2}{5}\right)} + \frac{\left(\frac{3}{5}\right)^{x}}{\log_{2}\left(\frac{2}{5}\right)} + \frac{\left(\frac{3}{5}\right)^{x}}{\log_{2}\left(\frac{3}{5}\right)} + C$
22. Show that the given differential equation is homogeneous $y' = \frac{x + y}{x}$
SOLUTION
 $y' = \frac{x + y}{dx} \text{ or } \frac{dy}{dx} = 1 + \frac{y}{x} \dots (1)$ Since R.H.S. is of the form $g(y/x)$, so it is a homogeneous function of degree zero. Therefore, equation (1) is a homogeneous differential equation (2) and (2) a

24. The slope of the tangent to the curve $y = \frac{x-1}{x-2}, x \neq 2$ at x = 10. is ...

SOLUTION

We have,
$$y = \frac{x-1}{x-2}, x \neq 2...$$
 (i) Differentiating (i) w.r.t. x , we get $\frac{dy}{dx} = \frac{(x-2) \cdot 1 - (x-1) \cdot 1}{(x-2)^2} = \frac{-1}{(x-2)^2}$
 \therefore Slope of tangent at $x = 10$ is $\left(\frac{dy}{dx}\right)_{x=10} = \frac{-1}{(10-2)^2} = -\frac{1}{64}$

Mock Test - Objective Type Questions

25. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively, having $\vec{a} \cdot \vec{b} = \sqrt{6}$. is ...

If θ be the angle between \vec{a} and \vec{b} , then $\cos \theta = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sqrt{6}}{\sqrt{3}(2)} = \frac{(\sqrt{3}).(\sqrt{2})}{(\sqrt{3})(2)} = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4}$. Hence, $\theta = \frac{\pi}{4}$. www.mathstudyt

26. If $sin(sin^{-1}\frac{1}{2} + cos^{-1}x) = 1$ then the value of x is ...

SOLUTION

$$sin(sin^{-1}\frac{1}{2} + cos^{-1}x) = 1$$

$$\Rightarrow sin^{-1}\frac{1}{2} + cos^{-1}x = sin\frac{\pi}{2}$$

$$\Rightarrow sin^{-1}\frac{1}{2} + cos^{-1}x = \frac{\pi}{2}$$

$$\frac{\pi}{6} + cos^{-1}(x) = \frac{\pi}{2}$$

$$\Rightarrow cos^{-1}(x) = \frac{\pi}{3}$$

$$\therefore x = \frac{1}{2}$$

- 27. If $tan^{-1}x + tan^{-1}y = \frac{\pi}{4}$ then the value of x +y +xy is ...
- okströ 28. Integration of $\int (2x^2 + e^x) dx$ is \cdots SOLUTION : Let $I = \int (2x^2 + e^x) dx = \frac{2x^3}{3} + e^x + C$

29. Integration of $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$ is ...

SOLUTION

: Let
$$I = \int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx = \int \left(x + \frac{1}{x} - 2\right) dx = \frac{x^2}{2} + \log x - 2x + C$$

30. Integration of $\int \frac{x^3 + 5x^2 - 4}{x^2} dx$ is ...

SOLUTION

$$\operatorname{Let} I = \int \left(\frac{x^3 + 5x^2 - 4}{x^2}\right) dx = \int \left(x + 5 - 4x^{-2}\right) dx = \frac{x^2}{2} + 5x - \frac{4x^{-1}}{-1} + C = \frac{x^2}{2} + 5x + \frac{4}{x} + C$$