DPP - 017

M.M.:34

www.mathstudy.in

1. $\tan \theta=\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots \infty}}}$ where $\theta \in(0,2 \pi)$ find the possible value of θ
[2]
2. Find the sum of the solutions of the equation $2 e^{2 x}-5 e^{x}+4=0$
3. Suppose that x and y are positive numbers for which $\log _{9} x=\log _{12} y=\log _{16}(x+y)$ If the value of $\frac{y}{x}-2 \cos \theta$, where $\theta \in\left(0, \frac{\pi}{2}\right)$ find θ
4. Using L'Hospitals or otherwise, evaluate the following limit $\lim _{x \rightarrow 0^{+}}\left(\frac{\left[1^{2}(\sin x)^{x}\right]+\left[2^{2}(\sin x)^{x}\right]+\cdots+\left[n^{2}(\sin x)^{x}\right]}{n^{3}}\right)$ where [.] denotes the greatest integer function.
5. Consider $f(x)=\frac{1}{\sqrt{b-a}} \frac{\sqrt{\frac{b-a}{a} \sin 2 x}}{\sqrt{1+\left(\sqrt{\frac{b-a}{a}} \sin x\right)^{2}}} \sqrt{a+b \tan ^{2} x}$, for $b>a>0$ and the functions $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are defined, such that $\mathrm{g}(\mathrm{x})=[f(x)]-\left\{\frac{f(x)}{2}\right\} \& h(x)=\operatorname{sgn}(f(x))$ for $x \in$ domain of f , otherwise $\mathrm{g}(\mathrm{x})=0=\mathrm{h}(\mathrm{x})$ for $x \notin$ domain of f , where $[\mathrm{x}]$ is the greatest integer function of x and $\{x\}$ is the fractional part of x. Then discuss the continuity of g and h at $x=\frac{\pi}{2}$ and $x=0$ respectively.
6. $\int \frac{x^{2} \tan ^{-1} x}{\left(1+x^{2}\right)^{5 / 2}} d x$
7. Using substitution only, evaluate $\int \operatorname{cosec}^{3} x d x$
8. If $\sin A=\frac{12}{13}$ Find the value of $\tan \frac{A}{2}$
9. The straight line $\frac{x}{a}+\frac{y}{b}=1$ cuts the x axis and the y axis in A and B respectively and a straight line perpendicular to AB cuts them in P and O respectively. Find the locus of the point of intersection of AQ and BP .
10. If $\frac{\tan \theta}{\tan \theta-\tan 3 \theta}=\frac{1}{3}$ find the value of $\frac{\cot \theta}{\cot \theta-\cot 3 \theta}$
11. If a $\Delta \mathrm{ABC}$ is formed by the lines $2 \mathrm{x}+\mathrm{y}-3=0, \mathrm{x}-\mathrm{y}+5=0$ and $3 \mathrm{x}-\mathrm{y}+1=0$ then obtain a cubic equation whose roots are the tangent of the interior angles of the triangle.
12. Integrate $\int \frac{d x}{\left(a^{2}-\tan ^{2} x\right) \sqrt{b^{2}-\tan ^{2} x}}(a>b)$
13. Let $\frac{d}{d x}\left(x^{2} y\right)=x-1$ where $x \neq 0$ and $y=0$ when $\mathrm{x}=1$. Find the set of values of x for which $\frac{d y}{d x}$ is positive.
14. Two circles of radii R and r are externally tangent. Find the radius of the third circle which is between them and touches those circles and their external common tangent in terms of R and r .
15. Let a matrix A be denoted as $\mathrm{A}=\operatorname{diag}\left(5^{x}, 5^{5^{x}}, 5^{5^{5^{x}}}\right)$ then compute the value of the integral $\int(\operatorname{det} A) d x$
16. Evaluate $\int \frac{-x}{1+x} \frac{d x}{\sqrt{x+x^{2}+x^{3}}}$
17. If three distinct points, $\left(\frac{a^{3}}{a-1}, \frac{a^{2}-3}{a-1}\right),\left(\frac{b^{3}}{b-1}, \frac{b^{2}-3}{b-1}\right),\left(\frac{c^{3}}{c-1}, \frac{c^{2}-3}{c-1}\right)$ are collinear then show that $a b c+3(a+b+c)=a b+b c+c a$
18. Integrate $\int \sqrt[3]{\tan x} d x$
