DPP - 015

M.M.:34 www.mathstudy.in Time : 50 Mints

- 1. Let a,b,c be three sides of a triangle. Suppose a and b are the roots of the equation $x^2 (c+4)x + 4(c+2) = 0$ and the largest angle of the triangle is θ degrees. Find θ [4]
- 2. Find the value of the definite integral $\int_0^{\pi} |\sqrt{2}sinx + 2cosx|dx$ [4]
- 3. Let $tan\alpha.tan\beta = \frac{1}{\sqrt{2005}}$ Find the value of $(1003 1002cos2\alpha)(1003 1002cos2\beta)$ [5]
- 4. $\int_{1}^{\frac{1+\sqrt{5}}{2}} \frac{x^2+1}{x^4-x^2+1} ln(1+x-\frac{1}{x})dx \quad [6]$
- 5. Two vectors $\vec{e_1}$ and $\vec{e_2}$ with $|\vec{e_1}| = 2$ and $|\vec{e_2}| = 1$ and angle between $\vec{e_1}$ and $\vec{e_2}$ is $\frac{\pi}{3}$ The angle between $2t\vec{e_1} + 7\vec{e_2}$ and $\vec{e_1} + t\vec{e_2}$ belongs to the interval $(90^\circ, 180^\circ)$ Find the range of t. [7]
- 6. A function f(x) continuous on R and periodic with period 2π satisfies $f(x) + sinx \cdot f(x+\pi) = sin^2 x$ Find f(x)and evaluate $\int f(x) dx$. [8]