DPP - 015

M.M.:34 WWW.mathstudy.in Time : 50 Mints

1. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three sides of a triangle. Suppose a and b are the roots of the equation $x^{2}-(c+4) x+4(c+2)=$ 0 and the largest angle of the triangle is θ degrees. Find θ [4]
2. Find the value of the definite integral $\int_{0}^{\pi}|\sqrt{2} \sin x+2 \cos x| d x$
3. Let $\tan \alpha \cdot \tan \beta=\frac{1}{\sqrt{2005}}$ Find the value of $(1003-1002 \cos 2 \alpha)(1003-1002 \cos 2 \beta) \quad$ [5]
4. $\int_{1}^{\frac{1+\sqrt{5}}{2}} \frac{x^{2}+1}{x^{4}-x^{2}+1} \ln \left(1+x-\frac{1}{x}\right) d x \quad$ [6]
5. Two vectors \vec{e}_{1} and $\overrightarrow{e_{2}}$ with $\left|\vec{e}_{1}\right|=2$ and $\left|\overrightarrow{e_{2}}\right|=1$ and angle between \vec{e}_{1} and $\overrightarrow{e_{2}}$ is $\frac{\pi}{3}$ The angle between $2 t \vec{e}_{1}+7 \vec{e}_{2}$ and $\vec{e}_{1}+t \vec{e}_{2}$ belongs to the interval $\left(90^{\circ}, 180^{\circ}\right)$ Find the range of t .
6. A function $\mathrm{f}(\mathrm{x})$ continuous on R and periodic with period 2π satisfies $f(x)+\sin x . f(x+\pi)=\sin ^{2} x$ Find $\mathrm{f}(\mathrm{x})$ and evaluate $\int f(x) d x$. [8]
