1. If the roots of the quadratic equation $x^{2}-(a+1) x+a=0$ are $\alpha$ and $\beta$, then the value of $\alpha^{2}+\beta^{2}$ is:
(a) $a^{2}+2 a+1$
(b) $a^{2}-2 a+1$
(c) $a^{2}$
(d) $a^{2}+1$
2. For the quadratic equation $x^{2}+2 b x+c=0$, if $1 / \alpha+1 / \beta=2 / b$, then $c$ is:
(a) $b^{2}$
(b) $2 b$
(c) $b$
(d) $4 b$
3. The equation whose roots are the squares of the roots of $x^{2}-6 x+8=0$ is:
(a) $x^{2}-14 x+36=0$
(b) $x^{2}-36 x+64=0$
(c) $x^{2}-8 x+16=0$
(d) $x^{2}-4 x+16=0$
4. If $\alpha$ and $\beta$ are the roots of $x^{2}-p x+q=0$, then the equation with roots $\alpha^{3}, \beta^{3}$ is:
(a) $x^{2}-p^{3} x+3 p q x-q^{3}=0$
(b) $x^{2}-q^{3} x+p^{3}=0$
(c) $x^{2}-3 p q x+q^{3}=0$
(d) $x^{2}-\left(p^{3}-3 p q\right) x+q^{3}=0$
5. The sum of the cubes of the roots of the equation $x^{2}-3 x+2=0$ is:
(a) 9
(b) 8
(c) 10
(d) 6
6. If $\alpha$ and $\beta$ are the roots of $x^{2}+x+1 \neq 0$, then $\alpha^{2}+\beta^{2}$ equals:
(a) 1
(b) -1
(c) 2
(d) -2
7. The product of the roots of the equation $x^{2}-(k+1) x+k=0$ for which the sum of the squares of the roots is minimum is:
(a) 1
(b) $k$
(c) $k+1$
(d) $2 k$
8. If $x^{2}-4 x+m=0$ has roots $\alpha$ and $\beta$, then the value of $\alpha^{3}+\beta^{3}$ is:
(a) $64-12 m$
(b) $64+12 m$
(c) $48+12 m$
(d) $48-12 m$
9. For the quadratic equation $a x^{2}+b x+c=0$, if $\alpha-\beta=d$, then $d^{2}$ is:
(a) $b^{2}-4 a c$
(b) $4 a c-b^{2}$
(c) $2 a c-b^{2}$
(d) $b^{2}+4 a c$
10. If the roots of the equation $x^{2}-10 c x+21 c^{2}=0$ are in the form of $\alpha / c$ " $l$ latex and $\beta / c$, then the value of $c$ is:
(a) 2
(b) 5
(c) 7
(d) 10
11. The equation with roots $2 \alpha+3$ and $2 \beta+3$, where $\alpha$ and $\beta$ are the roots of $x^{2}-7 x+10=0$, is:
(a) $x^{2}-17 x+70=0$
(b) $x^{2}-14 x+49=0$
(c) $x^{2}-17 x+34=0$
(d) $x^{2}-14 x+24=0$
12. If $x^{2}-(a+1) x+a=0$ has roots of the form $\alpha$ and $1 / \alpha$, then $a$ is:
(a) 1
(b) 0
(c) -1
(d) 2
13. The roots of the equation $x^{2}-12 x+35=0$ are $\alpha$ and $\beta$. The value of $\frac{1}{\alpha}+\frac{1}{\beta}$ is:
(a) $\frac{12}{35}$
(b) $\frac{35}{12}$
(c) 12
(d) 35
14. If the roots of $x^{2}-9 x+20=0$ are $\alpha$ and $\beta$, then $\alpha / \beta+\beta / \alpha$ is:
(a) $\frac{81}{20}$
(b) $\frac{20}{9}$
(c) 9
(d) $\frac{9}{20}$
15. The quadratic equation whose roots are the reciprocals of the roots of $x^{2}-3 x+2=0$ is:
(a) $x^{2}-2 x+3=0$
(b) $2 x^{2}-3 x+1=0$
(c) $3 x^{2}-2 x+1=0$
(d) $x^{2}-3 x+1=0$
16. If the sum of the cubes of the roots of the equation $x^{2}-a x+b=0$ is equal to 9 , then $a$ and $b$ must satisfy:
(a) $a^{3}-3 a b=9$
(b) $3 a^{3}-b^{2}=9$
(c) $a^{3}-3 a^{2} b=9$
(d) $3 a^{3}-9 b=9$
17. Given the equation $x^{2}-8 x+15=0$, the equation whose roots are the squares of the original roots is:

By: Sachin Sharmaa : Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in
(a) $x^{2}-15 x+64=0$
(b) $x^{2}-64 x+225=0$
(c) $x^{2}-225 x+64=0$
(d) $x^{2}-64 x+15=0$
18. If the quadratic equation $x^{2}+p x+q=0$ has roots $\alpha$ and $\beta$ such that $\alpha^{2}+\beta^{2}=1$, then:
(a) $p^{2}-2 q=1$
(b) $p^{2}+2 q=1$
(c) $2 p^{2}-q=1$
(d) $2 p+q^{2}=1$
19. The roots of $x^{2}-(k+3) x+k=0$ are real and distinct if $k$ satisfies:
(a) $k>3 / 4$
(b) $k<9 / 4$
(c) $k>9 / 4$
(d) $k<3 / 4$
20. If the roots of $x^{2}-4 x+m=0$ are $\alpha^{2}$ and $\beta^{2}$, then the roots of $x^{2}-2 m x+m^{2}-4=0$ are:
(a) $\alpha$ and $\beta$
(b) $-\alpha$ and $-\beta$
(c) $2 \alpha$ and $2 \beta$
(d) $-\alpha^{2}$ and $-\beta^{2}$
21. Given the roots of the quadratic equation $x^{2}-(a+1) x+a=0$ are equal, the value of $a$ is:
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) 1
(d) 2
22. If the quadratic equation $x^{2}-(3+\sqrt{5}) x+3 \sqrt{5}-4=0$ has roots $\alpha$ and $\beta$, then $\alpha^{3}+\beta^{3}$ equals:
(a) $27+9 \sqrt{5}$
(b) $18+6 \sqrt{5}$
(c) $27-9 \sqrt{5}$
(d) $18-6 \sqrt{5}$
23. The roots of the equation $x^{2}-6 x+8=0$ are $\alpha$ and $\beta$. Find the equation with roots $\alpha+2$ and $\beta+2$.
(a) $x^{2}-10 x+20=0$
(b) $x^{2}-10 x+16=0$
(c) $x^{2}-10 x+12=0$
(d) $x^{2}-6 x+12=0$
24. The equation $x^{2}-5 x+6=0$ has roots $\alpha$ and $\beta$. The equation whose roots are $\frac{1}{\alpha+2}$ and $\frac{1}{\beta+2}$ is:
(a) $x^{2}-\frac{5}{6} x+\frac{1}{6}=0$
(b) $x^{2}-\frac{5}{6} x-\frac{1}{6}=0$
(c) $x^{2}+\frac{5}{6} x+\frac{1}{6}=0$
(d) $x^{2}+\frac{5}{6} x-\frac{1}{6}=0$
25. If $\alpha$ and $\beta$ are the roots of the equation $x^{2}-7 x+10=0$, then the sum of the reciprocals of $\alpha^{2}+\alpha+1$ and $\beta^{2}+\beta+1$ is:
(a) $\frac{7}{10}$
(b) $\frac{10}{7}$
(c) $\frac{14}{10}$
(d) $\frac{10}{14}$
26. The roots of $x^{2}+x-1=0$ are $\alpha$ and $\beta$. The value of $\alpha^{2} / \beta+\beta^{2} / \alpha$ is:
(a) 1
(b) -1
(c) $\sqrt{5}$
(d) $-\sqrt{5}$
27. The quadratic equation whose roots are $\alpha+\beta$ and $\alpha \beta$, where $\alpha$ and $\beta$ are the roots of $x^{2}-3 x+1=0$, is:
(a) $x^{2}-4 x+3=0$
(b) $x^{2}-x-3=0$
(c) $x^{2}-3 x+2=0$
(d) $x^{2}+x-3=0$

## Answers to Symmetric Functions in Quadratic Equations

1. Answer: (B) $a^{2}-2 a+1$
2. Answer: (A) $b^{2}$
3. Answer: (A) $x^{2}-14 x+36=0$
4. Answer: (C) $x^{2}-\left(p^{3}-3 p q\right) x+q^{3}=0$
5. Answer: (B) 8
6. Answer: (C) 2
7. Answer: (A) 1
8. Answer: (D) $48-12 m$
9. Answer: (A) $b^{2}-4 a c$
10. Answer: (C) 7
11. Answer: (C) $x^{2}-17 x+34=0$
12. Answer: (A) 1
13. Answer: (B) $\frac{35}{12}$
14. Answer: (A) $\frac{81}{20}$
15. Answer: (B) $2 x^{2}-3 x+1=0$
16. Answer: (A) $a^{3}-3 a b=9$
17. Answer: (B) $x^{2}-64 x+225=0$
18. Answer: (A) $p^{2}-2 q=1$
19. Answer: (C) $k>9 / 4$
20. Answer: (A) $\alpha$ and $\beta$
21. Answer: (B) $\frac{1}{2}$
22. Answer: (A) $27+9 \sqrt{5}$
23. Answer: (C) $x^{2}-10 x+12=0$
24. Answer: (A) $x^{2}-\frac{5}{6} x+\frac{1}{6}=0$
25. Answer: (B) $\frac{10}{7}$
26. Answer: (C) $\sqrt{5}$
27. Answer: (C) $x^{2}-3 x+2=0$
