By: Sachin Sharma

Symmetric Functions in Quadratic Equations

1. If the roots of the quadratic equation $x^2 - (a+1)x + a = 0$ are α and β , then the value of $\alpha^2 + \beta^2$ is:

(a) $a^2 + 2a + 1$ (b) $a^2 - 2a + 1$ (c) a^2

(d) $a^2 + 1$

2. For the quadratic equation $x^2 + 2bx + c = 0$, if $1/\alpha + 1/\beta = 2/b$, then *c* is:

- (a) b^2
- (b) 2*b*
- (c) *b*
- (d) 4b

3. The equation whose roots are the squares of the roots of $x^2 - 6x + 8 = 0$ is:

(a) $x^2 - 14x + 36 = 0$ (b) $x^2 - 36x + 64 = 0$ (c) $x^2 - 8x + 16 = 0$

(d) $x^2 - 4x + 16 = 0$

4. If α and β are the roots of $x^2 - px + q = 0$, then the equation with roots α^3, β^3 is:

(a) $x^2 - p^3x + 3pqx - q^3 = 0$ (b) $x^2 - q^3x + p^3 = 0$ (c) $x^2 - 3pqx + q^3 = 0$ (d) $x^2 - (p^3 - 3pq)x + q^3 = 0$

5. The sum of the cubes of the roots of the equation $x^2 - 3x + 2 = 0$ is:

- (a) 9
- (b) 8
- (c) 10
- (d) 6

6. If α and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^2 + \beta^2$ equals:

- (a) 1
- (b) −1
- (c) 2
- (d) -2

7. The product of the roots of the equation $x^2 - (k+1)x + k = 0$ for which the sum of the squares of the roots is minimum is:

- (a) 1
- (b) *k*
- (c) k + 1
- (d) 2*k*

8. If $x^2 - 4x + m = 0$ has roots α and β , then the value of $\alpha^3 + \beta^3$ is:

- (a) 64 12m
- (b) 64 + 12m
- (c) 48 + 12m
- (d) 48 12m

9. For the quadratic equation $ax^2 + bx + c = 0$, if $\alpha - \beta = d$, then d^2 is:

(a) $b^2 - 4ac$

- (b) $4ac b^2$
- (c) $2ac b^2$
- (d) $b^2 + 4ac$

10. If the roots of the equation $x^2 - 10cx + 21c^2 = 0$ are in the form of α/c "*latex* and β/c , then the value of c is:

- (a) 2
- (b) 5
- (c) 7
- (d) 10

11. The equation with roots $2\alpha + 3$ and $2\beta + 3$, where α and β are the roots of $x^2 - 7x + 10 = 0$, is:

(a) $x^2 - 17x + 70 = 0$ (b) $x^2 - 14x + 49 = 0$ (c) $x^2 - 17x + 34 = 0$ (d) $x^2 - 14x + 24 = 0$

12. If $x^2 - (a+1)x + a = 0$ has roots of the form α and $1/\alpha$, then a is:

- (a) 1
- (b) 0
- (c) -1
- (d) 2

13. The roots of the equation $x^2 - 12x + 35 = 0$ are α and β . The value of $\frac{1}{\alpha}$

- (a) $\frac{12}{35}$
- (b) $\frac{35}{12}$
- (c) 12
- (d) 35

14. If the roots of $x^2 - 9x + 20 = 0$ are α and β , then $\alpha/\beta + \beta/\alpha$ is:

- 81 (a) $\frac{3}{20}$
- (b) $\frac{20}{9}$
- (c) 9
- (d) $\frac{9}{20}$

15. The quadratic equation whose roots are the reciprocals of the roots of $x^2 - 3x + 2 = 0$ is:

(a) $x^2 - 2x + 3 = 0$ (b) $2x^2 - 3x + 1 = 0$ (c) $3x^2 - 2x + 1 = 0$ (d) $x^2 - 3x + 1 = 0$

16. If the sum of the cubes of the roots of the equation $x^2 - ax + b = 0$ is equal to 9, then a and b must satisfy:

(a) $a^3 - 3ab = 9$ (b) $3a^3 - b^2 = 9$ (c) $a^3 - 3a^2b = 9$ (d) $3a^3 - 9b = 9$

17. Given the equation $x^2 - 8x + 15 = 0$, the equation whose roots are the squares of the original roots is:

By: Sachin Sharmaa : Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

- (a) $x^2 15x + 64 = 0$
- (b) $x^2 64x + 225 = 0$
- (c) $x^2 225x + 64 = 0$
- (d) $x^2 64x + 15 = 0$

18. If the quadratic equation $x^2 + px + q = 0$ has roots α and β such that $\alpha^2 + \beta^2 = 1$, then:

- (a) $p^2 2q = 1$
- (b) $p^2 + 2q = 1$
- (c) $2p^2 q = 1$
- (d) $2p + q^2 = 1$

19. The roots of $x^2 - (k+3)x + k = 0$ are real and distinct if k satisfies:

- (a) k > 3/4
- (b) k < 9/4
- (c) k > 9/4
- (d) k < 3/4

20. If the roots of $x^2 - 4x + m = 0$ are α^2 and β^2 , then the roots of $x^2 - 2mx + m^2 - 4 = 0$ are:

- (a) α and β
- (b) $-\alpha$ and $-\beta$
- (c) 2α and 2β
- (d) $-\alpha^2$ and $-\beta^2$
- 21. Given the roots of the quadratic equation $x^2 (a+1)x + a = 0$ are equal, the value of a is:
 - (a) $\frac{1}{4}$

 - (b) $\frac{1}{2}$
 - (c) 1
 - (d) 2

22. If the quadratic equation $x^2 - (3 + \sqrt{5})x + 3\sqrt{5} - 4 = 0$ has roots α and β , then $\alpha^3 + \beta^3$ equals:

- (a) $27 + 9\sqrt{5}$
- (b) $18 + 6\sqrt{5}$
- (c) $27 9\sqrt{5}$
- (d) $18 6\sqrt{5}$

23. The roots of the equation $x^2 - 6x + 8 = 0$ are α and β . Find the equation with roots $\alpha + 2$ and $\beta + 2$.

(a) $x^2 - 10x + 20 = 0$ (b) $x^2 - 10x + 16 = 0$ (c) $x^2 - 10x + 12 = 0$ (d) $x^2 - 6x + 12 = 0$

24. The equation $x^2 - 5x + 6 = 0$ has roots α and β . The equation whose roots are $\frac{1}{\alpha + 2}$ and $\frac{1}{\beta + 2}$ is:

(a) $x^2 - \frac{5}{6}x + \frac{1}{6} = 0$ (b) $x^2 - \frac{5}{6}x - \frac{1}{6} = 0$ (c) $x^2 + \frac{5}{6}x + \frac{1}{6} = 0$

By: Sachin Sharmaa : Download Mathematics E-Books for C.B.S.E / I.C.S.E. / I.S.C. / JEE from www.mathstudy.in

By: Sachin Sharma

Symmetric Functions in Quadratic Equations

(d)
$$x^2 + \frac{5}{6}x - \frac{1}{6} = 0$$

25. If α and β are the roots of the equation $x^2 - 7x + 10 = 0$, then the sum of the reciprocals of $\alpha^2 + \alpha + 1$ and $\beta^2 + \beta + 1$ is:

(a)
$$\frac{7}{10}$$

(b) $\frac{10}{7}$
(c) $\frac{14}{10}$
(d) $\frac{10}{14}$

(d) $\frac{10}{14}$	
26. The roots of $x^2 + x - 1 = 0$ are α and β . The roots of $x^2 + x - 1 = 0$ are α and β .	he value of $\alpha^2/\beta + \beta^2/\alpha$ is:

(a) 1	all
(b) -1	
(c) $\sqrt{5}$	
(d) $-\sqrt{5}$	A

- 27. The quadratic equation whose roots are $\alpha + \beta$ and $\alpha\beta$, where α and β are the roots of $x^2 3x + 1 = 0$, is:
 - (a) $x^2 4x + 3 = 0$
 - (b) $x^2 x 3 = 0$
 - (c) $x^2 3x + 2 = 0$
 - (d) $x^2 + x 3 = 0$

Answers to Symmetric Functions in Quadratic Equations

1. Answer: (B) $a^2 - 2a + 1$ 2. Answer: (A) b^2 3. Answer: (A) $x^2 - 14x + 36 = 0$ 4. Answer: (C) $x^2 - (p^3 - 3pq)x + q^3 = 0$ 5. Answer: (B) 8 6. Answer: (C) 2 7. Answer: (A) 1 8. Answer: (D) 48 - 12m9. Answer: (A) $b^2 - 4ac$ www.thathshill 10. Answer: (C) 7 11. Answer: (C) $x^2 - 17x + 34 = 0$ 12. Answer: (A) 1 13. Answer: (B) $\frac{35}{12}$ 14. Answer: (A) $\frac{81}{20}$ 15. Answer: (B) $2x^2 - 3x + 1 = 0$ 16. Answer: (A) $a^3 - 3ab = 9$ 17. Answer: (B) $x^2 - 64x + 225 = 0$ 18. Answer: (A) $p^2 - 2q = 1$ 19. Answer: (C) k > 9/420. Answer: (A) α and β 21. Answer: (B) $\frac{1}{2}$ 22. Answer: (A) $27 + 9\sqrt{5}$ 23. Answer: (C) $x^2 - 10x + 12 = 0$ 24. Answer: (A) $x^2 - \frac{5}{6}x + \frac{1}{6} = 0$ 25. Answer: (B) $\frac{10}{7}$ 26. Answer: (C) $\sqrt{5}$ 27. Answer: (C) $x^2 - 3x + 2 = 0$