1. The area of the region of the plane bounded above by the graph of $x^{2}+y^{2}+6 x+8=0$ and below by the graph of $y=|x+3|$ is
(a) $\pi / 4$
(b) $\pi^{2} / 4$
(c) $\pi / 2$
(d) π
2. Consider straight line $\mathrm{ax}+\mathrm{by}=\mathrm{c}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}^{+}$and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct. This line meets the coordinate axes at P and Q respectively If area of $\triangle \mathrm{OPQ} \mathrm{O}$ being the origin does not depend upon a, b and c then
(a) a,b,c are in G.P
(b) a,c,b are in G.P
(c) a,b,c are in A.P
(d) a,c,b are in A.P
3. If x and y are real numbers and $x^{2}+y^{2}=1$ then the maximum value of $(x+y)^{2}$ is
(a) 3
(b) 2
(c) $3 / 2$
(d) $\sqrt{5}$
4. The value of the definite integral $\int_{0}^{\infty} \frac{d x}{\left(1+x^{a}\right)\left(1+x^{2}\right)}(a>0)$ is
(a) $\pi / 4$
(b) $\pi / 2$
(c) π
(d) some function of a
5. Let a,b,c are non zero constant number then $\lim _{r \rightarrow \infty} \frac{\cos (a / r)-\cos (b / r) \cos (c / r)}{\sin (b / r) \sin (c / r)}$ equals
(a) $\frac{a^{2}+b^{2}-c^{2}}{2 b c}$
(b) $\frac{c^{2}+a^{2}-b^{2}}{2 b c}$
(c) $\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
(d) independent of a,b and c
6. A curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ such that $f^{\prime \prime}(x)=4 x$ at each point (x, y) on it and crosses the xaxis at $(-2,0)$ at an angle of $\pi / 4$ The value of $f(1)$ is
(a) -5
(b) -15
(c) $-55 / 3$
(d) $-35 / 3$
7. The minimum value of the function $f(x)=\frac{\sin x}{\sqrt{1-\cos ^{2} x}}+\frac{\cos x}{\sqrt{1-\sin ^{2} x}}+\frac{\tan x}{\sqrt{\sec ^{2} x-1}}+$ $\frac{\cot x}{\sqrt{\operatorname{cosec}^{2} x-1}}$ as x varies over all number in the largest possible domain of $f(x)$ is
(a) 4
(b) -2
(c) 0
(d) 2
8. A non zero polynomial with real coefficient has the property that $f(x)=f^{\prime}(x) \cdot f^{\prime \prime}(x)$ The leading coefficient of $f(x)$ is
(a) $1 / 6$
(b) $1 / 9$
(c) $1 / 12$
(d) $1 / 18$
9. Let $C_{n}=\int_{1 /(n+1)}^{1 / n} \frac{\tan ^{-1}(n x)}{\sin ^{-1}(n x)} d x$ then $\lim _{n \rightarrow \infty} n^{2} C_{n}$ equals
(a) 1
(b) 0
(c) -1
(d) $1 / 2$
10. Let z_{1}, z_{2}, z_{3} be complex numbers such that $z_{1}+z_{2}+z_{3}=0$ and $\left|z_{1}\right|=\left|z_{2}\right|\left|z_{3}\right|=1$ then $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}$ is
(a) greater than zero
(b) equal to 3
(c) equal to zero
(d) equal to 1
