Let\[I = \int {\frac{{{{\sin }^{ - 1}}x}}{{{{\left( {1 - {x^2}} \right)}^{3/4}}}}} dx = \int {\frac{{{{\sin }^{ - 1}}x}}{{\left( {1 - {x^2}} \right)\sqrt {1 - {x^2}} }}} dx\]
Let's put\[{\sin ^{ - 1}}x = t \Rightarrow \frac{1}{{\sqrt {1 - {x^2}} }}dx = dt\]
and\[x = \sin t \Rightarrow 1 - {x^2} = {\cos ^2}t\]
\[ \Rightarrow \] \[\cos t = \sqrt {1 - {x^2}} \]
therefore,\[I = \int {\frac{t}{{{{\cos }^2}t}}} dt = \int t \cdot {\sec ^2}tdt\]
\[ = t \cdot \int {{{\sec }^2}} tdt - \int {\left( {\frac{d}{{dt}}t \cdot \int {{{\sec }^2}} tdt} \right)} dt\]
\[ = t \cdot \tan t - \int 1 \cdot \tan tdt\]
\[= {\sin ^{ - 1}}x \cdot \frac{x}{{\sqrt {1 - {x^2}} }} + \log \left| {\sqrt {1 - {x^2}} } \right| + C\]
Buy Best Mathematics E-Books Visit : https://mathstudy.in/
Buy Mathematics Formula Book for Class XI,XII,JEE and other Engineering Competition Exam https://mathstudy.in/product/mathematics-formula-book/
Buy Mathematics Workbook for Class XII ( Fully Solved ) : https://mathstudy.in/product/work-book-class-xii-c-b-s-e-fully-solved/
Buy Mathematics Chapter Tests for Class XII ( Fully Solved) : https://mathstudy.in/product/mathematics-chapter-tests-class-xii-c-b-s-e/
Buy Objective Type Question Bank Class XII (Fully Solved ) : https://mathstudy.in/product/objective-type-question-bank-for-mathematics-class-xii-c-b-s-e/