Let \[ I = \int_0^2 {{e^x}} dx\]
Here, \[ a = 0\] and \[ b = 2\]
therefore,\[ h = \frac{{b - a}}{n}\]
\[ \Rightarrow \] \[ nh = 2\] and \[ f(x) = {e^x}\]
Now, \[ \int_0^2 {{e^x}} dx = \mathop {\lim }\limits_{h \to 0} h[f(0) + f(0 + h) + f(0 + 2h) + \ldots + f\{ 0 + (n - 1)h\} ]\]
therefore,\[ I = \mathop {\lim }\limits_{h \to 0} h\left[ {1 + {e^h} + {e^{2h}} + \ldots + {e^{(n - 1)h}}} \right]\]
\[ = \mathop {\lim }\limits_{h \to 0} h\left[ {\frac{{1 \cdot {{\left( {{e^h}} \right)}^n} - 1}}{{{e^h} - 1}}} \right] = \mathop {\lim }\limits_{h \to 0} h\left( {\frac{{{e^{nh}} - 1}}{{{e^h} - 1}}} \right)\]
therefore,\[ I = \mathop {\lim }\limits_{h \to 0} h\left[ {1 + {e^h} + {e^{2h}} + \ldots + {e^{(n - 1)h}}} \right]\]
\[ = \mathop {\lim }\limits_{h \to 0} h\left[ {\frac{{1 \cdot {{\left( {{e^h}} \right)}^n} - 1}}{{{e^h} - 1}}} \right] = \mathop {\lim }\limits_{h \to 0} h\left( {\frac{{{e^{nh}} - 1}}{{{e^h} - 1}}} \right)\]
\[ = \mathop {\lim }\limits_{h \to 0} h\left( {\frac{{{e^2} - 1}}{{{e^h} - 1}}} \right)\]
\[ = {e^2} - 1 = {e^2} - 1\]
Buy Best Mathematics E-Books Visit : https://mathstudy.in/
Buy Mathematics Formula Book for Class XI,XII,JEE and other Engineering Competition Exam https://mathstudy.in/product/mathematics-formula-book/
Buy Mathematics Workbook for Class XII ( Fully Solved ) : https://mathstudy.in/product/work-book-class-xii-c-b-s-e-fully-solved/
Buy Mathematics Chapter Tests for Class XII ( Fully Solved) : https://mathstudy.in/product/mathematics-chapter-tests-class-xii-c-b-s-e/
Buy Objective Type Question Bank Class XII (Fully Solved ) : https://mathstudy.in/product/objective-type-question-bank-for-mathematics-class-xii-c-b-s-e/