Edit Template

Regression Model in R Programming



Regression Model In R Programming





library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)
library(naniar)
library(dplyr)
library(datasets)
library(tinytex)
library(DT)
data("mtcars")


head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Transform certain variables into factors

mtcars$cyl  <- factor(mtcars$cyl)
mtcars$am   <- factor(mtcars$am,labels=c("Automatic","Manual"))
mtcars$vs   <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)
mtcars$carb <- factor(mtcars$carb)
boxplot(mpg ~ am, data = mtcars, col = (c("purple","red")), ylab = "Miles Per Gallon", xlab = "Type of Transmission", main = "MPG Vs AM")

aggregate(mpg~am, data = mtcars, mean)
##          am      mpg
## 1 Automatic 17.14737
## 2    Manual 24.39231

Difference of MPG between Automatic and Manual

24.39231 - 17.14737
## [1] 7.24494

Therefore, we can see that the Manual cars have an MPG of 7.245 (approx.) more than automatic cars

We can now use a t-test here

automatic_car <- mtcars[mtcars$am == "Automatic",]
manual_car <- mtcars[mtcars$am == "Manual",]
t.test(automatic_car$mpg, manual_car$mpg)
## 
##  Welch Two Sample t-test
## 
## data:  automatic_car$mpg and manual_car$mpg
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.280194  -3.209684
## sample estimates:
## mean of x mean of y 
##  17.14737  24.39231

We can see that the p-value is 0.001374, thus we can state this is a significant difference. Now to quantify this, we can use the following code :

model_1  <- lm(mpg ~ am, data = mtcars)
summary(model_1)
## 
## Call:
## lm(formula = mpg ~ am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.3923 -3.0923 -0.2974  3.2439  9.5077 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   17.147      1.125  15.247 1.13e-15 ***
## amManual       7.245      1.764   4.106 0.000285 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared:  0.3598, Adjusted R-squared:  0.3385 
## F-statistic: 16.86 on 1 and 30 DF,  p-value: 0.000285

Lets see with the help of corrplot , to check the correlation among the variables with mpg.

Before plotting the corrplot, we will check the structure of the data ;

df_1 <- subset(mtcars, select = c(mpg,cyl,disp,hp,drat,wt,qsec,vs))

head(df_1)
##                    mpg cyl disp  hp drat    wt  qsec vs
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1
str(df_1)
## 'data.frame':    32 obs. of  8 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...

Here we can see that, cyl and vs columns are in factor, we will now convert this into numeric to plot corrplot and check the correlation.

df_1$cyl <- as.character(df_1$cyl) 

df_1$cyl <- as.numeric(df_1$cyl)

df_1$vs <- as.character(df_1$vs)

df_1$vs <- as.numeric(df_1$vs)


# Now we can check the structure of the data again 
str(df_1)
## 'data.frame':    32 obs. of  8 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...

Now we can see that all the columns are in numeric, now we can plot wit the help of ggcorrplot and corrplot to check the correlation :

library(ggcorrplot)

r <- cor(df_1)

ggcorrplot(r,method = "circle", type = c("upper"), legend.title = "Corrplot MTCARS")
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

library(corrplot)
## corrplot 0.90 loaded
r <- cor(df_1)


corrplot(r, method = "circle")

model_2  <- lm(mpg~am + cyl + disp + hp + wt, data = mtcars)
anova(model_1, model_2)
## Analysis of Variance Table
## 
## Model 1: mpg ~ am
## Model 2: mpg ~ am + cyl + disp + hp + wt
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1     30 720.90                                  
## 2     25 150.41  5    570.49 18.965 8.637e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\textcolor{blue}{\textbf{ Here we can see that the result of p-value is 8.637e-08, and hence we can say that our model_2 is significantly better than our model_1 which is a simple model.}}

par(mfrow = c(2,2))
plot(model_2)

Now we will check the summary of our model_2

summary(model_2)
## 
## Call:
## lm(formula = mpg ~ am + cyl + disp + hp + wt, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9374 -1.3347 -0.3903  1.1910  5.0757 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 33.864276   2.695416  12.564 2.67e-12 ***
## amManual     1.806099   1.421079   1.271   0.2155    
## cyl6        -3.136067   1.469090  -2.135   0.0428 *  
## cyl8        -2.717781   2.898149  -0.938   0.3573    
## disp         0.004088   0.012767   0.320   0.7515    
## hp          -0.032480   0.013983  -2.323   0.0286 *  
## wt          -2.738695   1.175978  -2.329   0.0282 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.453 on 25 degrees of freedom
## Multiple R-squared:  0.8664, Adjusted R-squared:  0.8344 
## F-statistic: 27.03 on 6 and 25 DF,  p-value: 8.861e-10



Company

Our ebook website brings you the convenience of instant access to a diverse range of titles, spanning genres from fiction and non-fiction to self-help, business.

Features

Most Recent Posts

eBook App for FREE

Lorem Ipsum is simply dumy text of the printing typesetting industry lorem.

Hot

Category

Our ebook website brings you the convenience of instant access.

Company

About Us

FAQs

Contact Us

Terms & Conditions

Privacy Policy

Features

Copyright Notice

Mailing List

Social Media Links

Help Center

Products

Sitemap

New Releases

Best Sellers

Newsletter

Help

Copyright

Privacy Policy

Mailing List

© 2023 Created with Royal Elementor Addons