Edit Template

Let f: R$ – $R be defined as f(x)$ = $ 10x + 7. Find the function g : R $\rightarrow$ R such that gof $ = $ fog $ = $ IR. ~~~~[NCERT Misc.,Q.1, Page 29]

f: X $\rightarrow$Y, where X,$Y \subseteq R$. Let y $ \in $Y , arbitrarily.


By definition, y $ = $ 10x + 7 for x $ \in $ X


$\Rightarrow$ $x = \cfrac{{y - 7}}{{10}}$

We define, g : Y $\rightarrow$ X by g(y) $ = $$\cfrac{{y - 7}}{{10}}$


Now, (gof)(x) $ = g(f(x)) = $$\cfrac{{f(x) - 7}}{{10}} = \cfrac{{(10x + 7) - 7}}{{10}} = x$

and (fog) ( y ) $ = $ f (g(y)) $ = $ 10g (y) + 7 $ = $ 10 $\left( {\cfrac{{y - 7}}{{10}}} \right)$+ 7$ = $ y


Thus, gof $ = $ fog $ = $ IR.


Hence, f is invertible and g : Y $\rightarrow$ X such that g(y) $ = \cfrac{{y - 7}}{{10}}$

Purchase best math e books from : https://mathstudy.in/

Company

Our ebook website brings you the convenience of instant access to a diverse range of titles, spanning genres from fiction and non-fiction to self-help, business.

Features

Most Recent Posts

eBook App for FREE

Lorem Ipsum is simply dumy text of the printing typesetting industry lorem.

Hot

Category

Our ebook website brings you the convenience of instant access.

Help

Privacy Policy

Mailing List

© 2023 Created with Royal Elementor Addons