Find the real Solution of
${\tan ^{ - 1}}\sqrt {x(x + 1)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$.
[NCERT,Exemplar.2.3,Q.7,Page.36]
We have, ${\tan ^{ - 1}}\sqrt {x(x + 1)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$
……(i)
Let ${\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \theta $
$ \Rightarrow $$\sin \theta = \sqrt {\frac{{{x^2} + x + 1}}{1}} $
$ \Rightarrow $$\tan \theta = \frac{{\sqrt {{x^2} + x + 1} }}{{\sqrt { - {x^2} - x} }}$
$ = {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} $
On putting the value of $\theta $ in Eq. (i),
we get ${\tan ^{ - 1}}\sqrt {x(x + 1)} + {\tan ^{ - 1}}\frac{{\sqrt {{x^2} + x + 1} }}{{\sqrt { - {x^2} - x} }} = \frac{\pi }{2}$
We know that, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x + y}}{{1 - xy}}} \right),xy < 1$
$therefore, {\tan ^{ - 1}}\left[ {\frac{{\sqrt {x(x + 1)} + \sqrt {\frac{{{x^2} + x + 1}}{{ - {x^2} - x}}} }}{{1 - \sqrt {x(x + 1)} \cdot \sqrt {\frac{{{x^2} + x + 1}}{{ - {x^2} - x}}} }}} \right] = \frac{\pi }{2}$
$ \Rightarrow $${\tan ^{ - 1}}\left[ {\frac{{\sqrt {{x^2} + x} + \sqrt {\frac{{{x^2} + x + 1}}{{ - 1\left( {{x^2} + x} \right)}}} }}{{1 - \sqrt {\left( {{x^2} + x} \right) \cdot \frac{{\left( {{x^2} + x + 1} \right)}}{{ - 1\left( {{x^2} + x} \right)}}} }}} \right] = \frac{\pi }{2}$
$ \Rightarrow $$\frac{{{x^2} + x + \sqrt { - \left( {{x^2} + x + 1} \right)} }}{{\left[ {1 - \sqrt { - \left( {{x^2} + x + 1} \right.} } \right]\sqrt {\left( {{x^2} + x} \right)} }} = \tan \frac{\pi }{2} = \frac{1}{0}$
$ \Rightarrow \left[ {1 - \sqrt { - \left( {{x^2} + x + 1} \right)} } \right]\sqrt {\left( {{x^2} + x} \right)} = 0$
$ \Rightarrow - \left( {{x^2} + x + 1} \right) = 1$ or ${x^2} + x = 0$
$ \Rightarrow - {x^2} - x - 1 = 1$ or $x(x + 1) = 0$
$ \Rightarrow $${x^2} + x + 2 = 0$ or $x(x + 1) = 0$
$therefore, x = \frac{{ - 1 \pm \sqrt {1 - 4 \times 2} }}{2}$
$ \Rightarrow $$x = 0$ or $x = - 1$
For real Solution, we have $x = 0, - 1$
Buy Mathematics Formula Book for Class XI,XII,JEE and other Engineering Competition Exam https://mathstudy.in/product/mathematics-formula-book/
Buy Mathematics Workbook for Class XII ( Fully Solved ) : https://mathstudy.in/product/work-book-class-xii-c-b-s-e-fully-solved/
Buy Mathematics Chapter Tests for Class XII ( Fully Solved) : https://mathstudy.in/product/mathematics-chapter-tests-class-xii-c-b-s-e/
Buy Objective Type Question Bank Class XII (Fully Solved ) : https://mathstudy.in/product/objective-type-question-bank-for-mathematics-class-xii-c-b-s-e/