$\int_0^\pi {\frac{x}{{1 + \sin x}}} $ ~~~~~[NCERT Exemp. Q. 37,Page 165 ]
and $I = \int_0^\pi {\frac{{\pi – x}}{{1 + \sin (\pi – x)}}} dx = \int_0^\pi {\frac{{\pi – x}}{{1 + \sin x}}} dx$ ………(ii) On adding Equations (i) and (ii), we get$2I = \pi \int_0^\pi {\frac{1}{{1 + \sin x}}} dx$ $ = \pi \int_0^\pi {\frac{{(1 – \sin x)dx}}{{(1 + \sin x)(1 – \sin x)}}} $ $ = \pi \int_0^\pi {\frac{{(1 – \sin x)dx}}{{{{\cos }^2}x}}} $ $ = \pi \int_0^\pi {\left( {{{\sec }^2}x – \tan x \cdot \sec x} \right)} dx$ $ = \pi \int_0^\pi {{{\sec }^2}} xdx – \pi \int_0^\pi {\sec } xx \cdot \tan xdx$ $ = \pi [\tan x]_0^\pi – \pi [\sec x]_0^\pi $$ = \pi [\tan x – \sec x]_0^\pi $ $ = \pi [\tan \pi – \sec \pi – \tan 0 – \sec 0]$ $ \Rightarrow $$2I = \pi [0 + 1 – 0 + 1]$ $2I = 2\pi $ therefore,$I = \pi $
What is the integration of $\int {\frac{{{x^2}}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} dx$ ~~~~~[NCERT Exemp. Q. 36,Page 165 ]
What is the integration of \[\int_0^{1/2} {\frac{{dx}}{{\left( {1 + {x^2}} \right)\sqrt {1 – {x^2}} }}} \] ~~~~~[NCERT Exemp. Q. 34,Page 165 ]
What is the integration of \[ \int_0^\pi x \sin x{\cos ^2}xdx\] ~~~~~[NCERT Exemp. Q. 33,Page 165 ]
What is the integration of \[ \int_0^1 {\frac{x}{{\sqrt {1 + {x^2}} }}} dx\] ~~~~~[NCERT Exemp. Q. 32,Page 165 ]
What is the integration of \[ \int_1^2 {\frac{{dx}}{{\sqrt {(x – 1)(2 – x)} }}} \]~~~~~[NCERT Exemp. Q. 31,Page 165 ]
What is the integration of \[ \int_0^{\pi /2} {\frac{{\tan x}}{{1 + {m^2}{{\tan }^2}x}}} dx\] ~~~~~[NCERT Exemp. Q. 30,Page 165 ]
What is the integration of \[ \int_0^1 {\frac{{dx}}{{{e^x} + {e^{ – x}}}}} \] ~~~~~[NCERT Exemp. Q. 29,Page 165 ]
CLASS I – What Comes After , What Comes Before – 15 Minutes
[watupro 37]