How to integrate $\int_{\pi /3}^{\pi /2} {\frac{{\sqrt {1 + \cos x} }}{{{{(1 – \cos x)}^{5/2}}}}} dx$ ~~~~~[NCERT Exemp. Q. 41,Page 166 ]
How to integrate $\int {{{\sin }^{ – 1}}} \sqrt {\frac{x}{{a + x}}} dx$ ~~~~~[NCERT Exemp. Q. 40,Page 166 ]
$\int {{e^{{{\tan }^{ – 1}}x}}} \left( {\frac{{1 + x + {x^2}}}{{1 + {x^2}}}} \right)dx$ ~~~~~[NCERT Exemp. Q. 39,Page 166 ]
Purchase Best Mathematics – E-Books from : https://mathstudy.in/
$\int {\frac{{2x – 1}}{{(x – 1)(x + 2)(x – 3)}}} dx$ ~~~~~[NCERT Exemplar Q. 38,Page 165 ]
$\int_0^\pi {\frac{x}{{1 + \sin x}}} $ ~~~~~[NCERT Exemp. Q. 37,Page 165 ]
and $I = \int_0^\pi {\frac{{\pi – x}}{{1 + \sin (\pi – x)}}} dx = \int_0^\pi {\frac{{\pi – x}}{{1 + \sin x}}} dx$ ………(ii) On adding Equations (i) and (ii), we get$2I = \pi \int_0^\pi {\frac{1}{{1 + \sin x}}} dx$ $ = \pi \int_0^\pi {\frac{{(1 – \sin x)dx}}{{(1 + \sin x)(1 – \sin x)}}} $ $ = \pi \int_0^\pi {\frac{{(1 – \sin x)dx}}{{{{\cos }^2}x}}} $ $ = \pi \int_0^\pi {\left( {{{\sec }^2}x – \tan x \cdot \sec x} \right)} dx$ $ = \pi \int_0^\pi {{{\sec }^2}} xdx – \pi \int_0^\pi {\sec } xx \cdot \tan xdx$ $ = \pi [\tan x]_0^\pi – \pi [\sec x]_0^\pi $$ = \pi [\tan x – \sec x]_0^\pi $ $ = \pi [\tan \pi – \sec \pi – \tan 0 – \sec 0]$ $ \Rightarrow $$2I = \pi [0 + 1 – 0 + 1]$ $2I = 2\pi $ therefore,$I = \pi $