Edit Template

Prove that ${\tan ^{ – 1}}\left( {\frac{{\sqrt {1 + {x^2}} + \sqrt {1 – {x^2}} }}{{\sqrt {1 + {x^2}} – \sqrt {1 – {x^2}} }}} \right) = \frac{\pi }{4} + \frac{1}{2}{\cos ^{ – 1}}{x^2}$.<br>[NCERT,Exemplar.2.3,Q.12,Page.36]

Prove that ${\tan ^{ – 1}}\left( {\frac{{\sqrt {1 + {x^2}} + \sqrt {1 – {x^2}} }}{{\sqrt {1 + {x^2}} – \sqrt {1 – {x^2}} }}} \right) = \frac{\pi }{4} + \frac{1}{2}{\cos ^{ – 1}}{x^2}$.
[NCERT,Exemplar.2.3,Q.12,Page.36]

We have,
${\tan ^{ – 1}}\left( {\frac{{\sqrt {1 + {x^2}} + \sqrt {1 – {x^2}} }}{{\sqrt {1 + {x^2}} – \sqrt {1 – {x^2}} }}} \right) = \frac{\pi }{4} + \frac{1}{2}{\cos ^{ – 1}}{x^2}$

$therefore, $${\rm{LHS}} = {\tan ^{ – 1}}\left( {\frac{{\sqrt {1 + {x^2}} + \sqrt {1 – {x^2}} }}{{\sqrt {1 + {x^2}} – \sqrt {1 – {x^2}} }}} \right)$

….(i)
[let ${x^2} = \cos 2\theta = \left( {{{\cos }^2}\theta – {{\sin }^2}\theta } \right) = 1 – 2{\sin ^2}\theta = 2{\cos ^2}\theta – 1$]
$ \Rightarrow $${\cos ^{ – 1}}{x^2} = 2\theta \Rightarrow \theta = \frac{1}{2}{\cos ^{ – 1}}{x^2}$

$therefore, $$\sqrt {1 + {x^2}} = \sqrt {1 + \cos 2\theta } $

$ = \sqrt {1 + 2{{\cos }^2}\theta – 1} = \sqrt 2 \cos \theta $

and $\sqrt {1 – {x^2}} = \sqrt {1 – \cos 2\theta } $
$ = \sqrt {1 – 1 + 2{{\sin }^2}\theta } = \sqrt 2 \sin \theta $

$therefore, $${\rm{LHS}} = {\tan ^{ – 1}}\left( {\frac{{\sqrt 2 \cos \theta + \sqrt 2 \sin \theta }}{{\sqrt 2 \cos \theta – \sqrt 2 \sin \theta }}} \right)$

$ = {\tan ^{ – 1}}\left( {\frac{{\cos \theta + \sin \theta }}{{\cos \theta – \sin \theta }}} \right)$

$ = {\tan ^{ – 1}}\left( {\frac{{1 + \tan \theta }}{{1 – \tan \theta }}} \right) = {\tan ^{ – 1}}\left( {\frac{{\tan \frac{\pi }{4} + \tan \theta }}{{1 – \tan \frac{\pi }{4} \cdot \tan \theta }}} \right)$

$ = {\tan ^{ – 1}}\left[ {\tan \left( {\frac{\pi }{4} + \theta } \right)} \right]$

$ = \frac{\pi }{4} + \theta = \frac{\pi }{4} + \frac{1}{2}{\cos ^{ – 1}}{x^2}$
$ = {\rm{RHS}}$ Hence proved.


Buy Best Mathematics E-Books Visit : https://mathstudy.in/

Buy Mathematics Formula Book for Class XI,XII,JEE and other Engineering Competition Exam https://mathstudy.in/product/mathematics-formula-book/

Buy Mathematics Workbook for Class XII ( Fully Solved ) : https://mathstudy.in/product/work-book-class-xii-c-b-s-e-fully-solved/

Buy Mathematics Chapter Tests for Class XII ( Fully Solved) : https://mathstudy.in/product/mathematics-chapter-tests-class-xii-c-b-s-e/

Buy Objective Type Question Bank Class XII (Fully Solved ) : https://mathstudy.in/product/objective-type-question-bank-for-mathematics-class-xii-c-b-s-e/

Company

Our ebook website brings you the convenience of instant access to a diverse range of titles, spanning genres from fiction and non-fiction to self-help, business.

Features

Most Recent Posts

eBook App for FREE

Lorem Ipsum is simply dumy text of the printing typesetting industry lorem.

Hot

Category

Our ebook website brings you the convenience of instant access.

Company

About Us

FAQs

Contact Us

Terms & Conditions

Privacy Policy

Features

Copyright Notice

Mailing List

Social Media Links

Help Center

Products

Sitemap

New Releases

Best Sellers

Newsletter

Help

Copyright

Privacy Policy

Mailing List

© 2023 Created with Royal Elementor Addons